

Bachelor of Computer Application

(B.C.A.)

C Programming

Semester-II

Author- Poonam Ponde

SURESH GYAN VIHAR UNIVERSITY

Centre for Distance and Online Education

Mahal, Jagatpura, Jaipur-302025

Published by:

S. B. Prakashan Pvt. Ltd.

WZ-6, Lajwanti Garden, New Delhi: 110046

Tel.: (011) 28520627 | Ph.: 9205476295

Email: info@sbprakashan.com | Web.: www.sbprakashan.com

© SGVU

All rights reserved.

No part of this book may be reproduced or copied in any form or by any means (graph-
ic, electronic or mechanical, including photocopying, recording, taping, or information
retrieval system) or reproduced on any disc, tape, perforated media or other information
storage device, etc., without the written permission of the publishers.

Every effort has been made to avoid errors or omissions in the publication. In spite of this,
some errors might have crept in. Any mistake, error or discrepancy noted may be brought
to our notice and it shall be taken care of in the next edition. It is notified that neither the
publishers nor the author or seller will be responsible for any damage or loss of any kind,
in any manner, therefrom.

For binding mistakes, misprints or for missing pages, etc., the publishers’ liability is lim-
ited to replacement within one month of purchase by similar edition. All expenses in this
connection are to be borne by the purchaser.

Designed & Graphic by : S. B. Prakashan Pvt. Ltd.

Printed at :

Dr (Prof.) T.K. Jain
Director, CDOE, SGVU

Dr. Dev Brat Gupta
Associate Professor (SILS) & Academic
Head, CDOE, SGVU

Ms. Hemlalata Dharendra
Assistant Professor, CDOE, SGVU

Ms. Kapila Bishnoi
Assistant Professor, CDOE, SGVU

Dr. Manish Dwivedi
Associate Professor & Dy, Director,
CDOE, SGVU

Mr. Manvendra Narayan Mishra
Assistant Professor (Deptt. of Mathematics)
SGVU

Ms. Shreya Mathur
Assistant Professor, CDOE, SGVU

Mr. Ashphaq Ahmad
Assistant Professor, CDOE, SGVU

EDITORIAL BOARD (CDOE, SGVU)

Syllabus

C Programming

Learning Objectives

1. Write algorithms, flowcharts and programs.
2. Implement different programming constructs and decomposition of problems into

functions.
3. Use and implement data structures like arrays and structures to obtain solutions.
4. Define and use of pointers with simple applications.

Unit 1

Introduction to Computing: Introduction, Art of Programming through Algorithms and
Flowcharts. Overview of C: History and importance of C, Basic structure of C program, executing
a C program. Constants, Variable and Data Types: Introduction, Character Set, C Tokens,
Keywords and Identifiers, Constants, Variables, Data Types, Declaration of Variables, Assigning
Values to Variables, Defining Symbolic Constants. Managing Input and Output Operations:
Reading a Character, Writing a Character, Formatted Input, Formatted Output. Operators and
Expressions: Introduction, Arithmetic Operators, Relational Operators, Logical Operators,
Assignment Operators, Increment and Decrement Operators, Conditional Operator, Bitwise
Operators, Special Operators, Arithmetic Expressions, Evaluation of Expressions, Precedence of
Arithmetic Operators, Type Conversions in Expressions, Operator Precedence and Associativity.

Unit 2

Decision Making and Branching: Introduction, Decision Making with IF Statement, Simple IF
Statement, the IF-ELSE Statement, Nesting of IF-ELSE Statements, The ELSE IF Ladder, The
Switch statement, The?: Operator, The goto statement. Decision Making and Looping:
Introduction, The while Statement, The do statement, The for statement, Jumps in LOOPS.

Unit 3

Arrays: One-dimensional Arrays, Declaration of One-dimensional Arrays, Initialization of One-
dimensional Arrays, Example programs- Bubble sort, Selection sort, Linear search, Binary search,
Two-dimensional Arrays, Declaration of Two-dimensional Arrays, Initialization of Two-
dimensional Arrays, Example programs-Matrix Multiplication, Transpose of a matrix. Character
Arrays and Strings: Declaring and Initializing String Variables, Reading Strings from Terminal,
Writing Strings to Screen, Arithmetic Operations on Characters, String-handling Functions,
Example Programs (with and without using built-in string functions)

Unit 4

User-defined Functions: Need for functions, Elements of User-defined Functions, Definition of
Functions, Return Values and their Types, Function Calls, Function Declaration, Category of

Functions, No Arguments and no Return Values, Arguments but no Return values, Arguments
with Return Values, No Arguments but Returns a Value, Passing Arrays to Functions, Recursion,
The Scope, Visibility and Lifetime of variables. Pointers: Introduction, Declaring Pointer
Variables, Initialization of Pointer variables, accessing a Variable through its Pointer, Pointer
Expressions, Pointer Increments and Scale Factor.

Unit 5

Structures: Introduction, defining a structure, declaring structure variables, accessing structure
members, structure initialization, array of structures. File Management in C: Introduction,
Defining and opening a file, closing a file, Input/output and Error Handling on Files.

Reference

- E. Balaguruswamy, “Programming in ANSI C”, 8th Edition, 2019, McGraw Hill
Education, ISBN: 978-93-5316-513-0.

- Pradip Dey, Manas Ghosh, “Programming in C”, 2nd Edition, 2018, Oxford University
Press, ISBN: 978-01-9949-147-6.

- Kernighan B.W and Dennis M. Ritchie, “The C Programming Language”, 2nd Edition,
2015, Pearson Education India, ISBN: 978-93-3254-944-9.

- Yashavant P. Kanetkar, “Let Us C”, 16th Edition, 2019, BPB Publications, ISBN: 978-
938728-449-4.

- Jacqueline A Jones and Keith Harrow, “Problem Solving with C”, Pearson Education.
ISBN: 978-93-325-3800-9.

- Dr. Guruprasad Nagraj, “C Programming for Problem Solving”, Himalaya Publishing
House. ISBN-978-93-5299-361-1. Weblinks and Video Lectures (e-Resources):

- http://elearning.vtu.ac.in/econtent/courses/video/BS/14CPL16.html
- https://nptel.ac.in/courses/106/105/106105171/

2.

G o nte nts
An Overview Of C i6

1.5

Variables, Data Types, Operator And Expression 30

?l 3::13fH:'i'"7

2.9 Type Conversi
210 Precedence and Associativity of Operators2-23

3. Built In l/O Functions 14

3.2 Unformatted Console l/O Operations 3-1
3.3 Formatted Console l/O Operations,............ 34
Control Statements 36

{2 Selection / Decisi.:r
4.3 fterative Statemenls (Loop Control Structure)......,4-12

Array And String 20

Pointera 30

6,7 Pnctdtncr of & AND . opordorr,,,,, ,,.,.,,,,,,,.,.,.8"10

I Frogrrmmlng olr ftatsl

4.

5.

0.

287. Function

7.3 Functions and Structured Programming '...."..'....7'2

7.5 Library and User Defined Functions,........'. .7'3

7.10 Methods

8. Storage Glasses And Scope

9. Structure, Union, Enumeration And typedef 24

9.2 Structures and Enumerated Data Type....9-14

9.4 Difference between Structure and Union'.......9'18

10. C Preprocessor 12

2011. File Handling

11.5 Error Handling during l/O

12. Bitwise Operatore {0

1r, Gnphlca In C 12

13,3 Drwlng Slmplr Oraphler Objce{r,,..,..,,,,

14, Comm*nd tlne Argumentl t
$,n Advnntrgcr of eommrnd Llnc Argumcnt, ,,,,,,,,,,,,,,,,,,,, ',"',,,,',,14'g

ttr*

10

An Overview Of C

t. I HtsToRY oF c
The development of C language was a result of the evolution of several languages, which can be

called'the ancestors of C'. These were Algol60, CPL, BCPL and B.

In the 1960s many computer languages, each for a specific purpose, were developed, for example,

COBOL and FORTRAN. The need was felt for a general purpose language that would suit a variety of
applications. An international committee set for this purpose, designed Algol 60, which eventually led
to the development of C.

i. Algol 60 was a modular and structured language but it did not succeed because it was found to
be too abstract and too general.

ii. The Combined Programming Language (CPL) developed at Cambridge University and
University of London tn 1963 was a successor of Algol 60.

However it was hard to learn and difficult to implement.

iii. The Basic Combined Programming Language (BCPL) was very close to CPL and developed
by Martin Richards at Cambridge University in 1967. BCPL was too less powerful and too
specific and hence it failed.

iv. The father of C language was the B language developed by Ken Thompson of Bell Laboratories
in 1970. It was designed for an early implementation of UNIX. However, it was machine
dependent and a 'typeJess language'. For this reason, Dennis Ritchie began work on a new
language as a successor to B.

1.1 ()"
utEt0tl

W C Programming An Overuiew of C ()"
utStotl

v. The 'C' programming language by Dennis Ritchie came into existence'in 1972 at Bell

Laboratories. The early development and use of C was closely linked with UND(for which it
was developed. For many years, the only reference available on C was the published informal

description in Kernighan and Ritchie's book.

In 1983, the American National Standards Institute (ANSD established a committee to provide a

formal comprehensive definition of 'C'. This ANSI standard known as "ANSI C" was completed in

1988.

,.2 COMPUTER LANGUAGES
Computer languages have evolved over the years from the earliest machine language to the recent

natural languages.

AII the programming languages are divided into 3 levels:

i. Low l,evel Language

ii. High Level Language

iii. Middle l,evel Language

Low Level Languages

These languages were the earliest languages developed. Under this category, we have Machine

and Assembly languages.

t-arijl6o I
(By an International Committee, 1960)

__it- cPL -l
(At Cambridge and London University, 1963)

r-TeFL-l
(Martin Richards at Cambridge University, 1967)

v

l----B*-l
(Ken Thompson at Bell Laboratories, 1970)

Yr-T-t
(Dennis Ritchie, Bell Labs, 1972)

Figure 1.1: Development of C

,r?ri, C Programming o An Overuiewof C W
Features of Low Level Languages

a. These languages are greatly hardware dependent, i.e., the code had to be written for
specific hardware.

Programs written on one machine will not run on another (non-portable).

Programmers are required to have knowledge about the hardware as well.

Machine Language: Since the computer is made up of electronic circuits, they can only
understand binary logic (0's and I's). Hence in order to communicate with the computer,
the user has to give instructions in term of 0's and 1's. This was called machine language
and it was one of the earliest computer languages (1940's),

Advantage

Since the computer circuits can directly interpret 0 and 1, execution of programs is very
fast.

Disadvantages

o Writing programs in binary is very difficult.
. It is very easy to make errors during writing or data entry.

o Debugging is very difficult.
o There is no distinction between the instruction and operands or data.

. It is difficult to understand the program logic by looking at the program.

2. Symbolic / Assembly Language: These were developed in the 1950's to remove the
disadvantage of Machine Language. In these languages, small EngliSh like words, called
mnemonics were used for instructions (For example: ADD, SUB, etc) and hexadecimal
codes were used for data.

Example: 8085, 8086 languages.

Advantages

r Writing of programs became easier,

o Errors are minimized.

o Identification oferrors is easy,

o There is a distinction between instructions and data.

o Progtams can be easily understood.

Disadvantages

1. Because a computer does not understand syrhbolic language, it has to be translated

to machine language.

2. A special software called Assembler is needed to translate assembly code to
machine code.

3. Execution becomes slower.

b.

c,

1.

W C Programming An Overuiew of C (^
ut8loil

il. High Level Languages

High level Inngunges were developed to

a.

b.

c.

1.

)
3.

4.

Improve programming effi ciency.

Shift focus from the computer to problem solving.

Develop portable applications.

Features of high level languages

Use of English - like words for instructions.

Support to multiple datatypes like characters, integers, real numbers etc.

Hardware independent insffuction set (Portability).

Programs have to be converted from high-level languages to machine languages.

Conversion is done by special Software (Compiler or Interpreter).

Example: Pascal, FORTRAN, COBOL, BASIC, etc.

iii. Middle Level Language

C is thought of as a middle level language because it combines elements of high-level language
with the functionalism of assembly language. C allows manipulation of bits, bytes and
addresses - the basic elements with which the computer functions. Also, C code is very portable,
that is sol'tware written on one type of computer can be adapted to work on another type.
Although C has five basic built-in data types, it is not strongly typed language as compared to
high level languages, C permits almost all data type conversions.

It allows direct manipulation of bits, bytes, words, and point,ers. Thus, it is ideal for system

level-programming.

t .2.1 'C' - Structured Language

The term block structured language does not apply strictly to C. Technically, a block-structured
language permits procedures and function to be declared inside other procedures or functions. C does

not allow creation of functions, within functions, and therefore cannot formally be called a block-
structured language. However, it is referred to as a structured language because it is similar in many

ways to other structured languages like ALGOL, Pascal and the likes.

C allows compartmentalization of code and data. This is a distinguishing feature of any structured

language. It refers to the ability of a language to section off and hide all information and instructions
necessary to perform a specific task from the rest of the prograrn. Code can be compartmentalized in C
using functions or code blocks. Functions are used to define and code separately, special tasks

required in a program

This allows programs to be modular. Code block is a logically connected group of program

statements that is treated like a unit. A code block is created by placing a sequence of statements

between opening and closing curly braces.

u{lin c programmins . An overviewof c W
I.3 WHERE 'C' STANDS?

The'C'programming languages is a very powerful and flexible language.

It provides the programmer a facility to write low-level programs as well as high-level programs.
Thus, it is designed to have both-good programming efficiency and good machine efficiency.

For these reasons, C is called a Middle Level Language. It permits machine independent programs

to be written as well as permits close interaction with the hardware.

1.3.1 Application Areas
'C'is a general purpose programming language and not designed for specific application areas like

COBOL (business applications) or FORTRAN (scientific and engineering applications).

'C' is well suited for business as well as scientific applications because it has various features (rich
set of operators, control structures, bit manipulation, etc.) required for these applications.

However it is better suited and widely used for system software like operating systems, compilers,
interpreters, etc. characteristics.

r.3.2 Features of 'C'
In the current scenario there are several languages to choose from. Most are well suited for a

variety of tasks. However, there are several reasons why 'C' is a popular programming language.

i. Flexibility: 'C' is a general purpose language. It can be used for
diverse applications. The language itself places no constraints on the
programmer.

ii. Powerful: It provides a variety of data types, control-flow
instructions for structured programs and other builrin features.

iii. Small size: 'C' language provides no input/output facilities or file
access. These mechanisms are provided by functions. This helps in
keeping the language small. 'C'has only 32 keywords, which can be
described in a small space and learned quickly.

iv. Modular design: The'C'code has to be written in functions, which
can be linked with or called in other programs or applications. C
also allows user defined functions to be stored in librarv files and
linked to other programs.

v. Portability: A 'C' program written for one computer system can be compiled and run on
another with little or no modification. The use of compiler directives to the preprocessor makes
it possible to write a single program that can be used on different types of computers.

vi. High level structured language features: This allows the programmer to concentrate on the
logic flow of the code rather than worry about the hardware instructions.

I
ffi C Programming An Overview of C (.),

uttlotl

vii. Low level features: 'C'has a close relationship with the assembly language making it easier to
write assembly language code in a'C' program.

viii, Bit Engineering: 'C' provides bit manipulation operators, which are a great advantage over
other languages.

Use of pointers: This provides for machine independent address arithmetic.

Efficiency: A program written in 'C'has development efficiency as well as machine efficient
(i.e., faster to execute).

| .3.3 Limitations of 'C'
The 'C' Ianguage, however, does hnve its limitations:

i. . It is not suitable for programming of numerical algorithms since it does not provide suitable
data structures.

ii. 'C'does not perform bound checking on arays. This results in unpredictable errors, which are

difficult to locate.

iii, The order of evaluation of function arguments is not specified by the language.

Example: In the function call, f (i,++i); it is not defined whether the evaluation is left to right or
right to left.

iv. The order in which operators are evaluated is not specified in some cases.

Example: In a[i] = b [i + +], the value of i' could be incremented after the assignment or it
could be increment.,ed after b [i] is fetched but before assignment.

The order of evaluation of operands of an operator is also not specified.

Example: Sum = (++a ,- - a). Here it is left to the compiler as to which it evaluates first.

v. 'C' is not a strongly typed language, which means that the compiler does not strictly check and

indicate errors for those statements that attempt a mismatch of data types.

This can cause unintentional elrors, which are difficult to trace.

4.4 PROGRAM DEVELOPMENT CYCLE
The program development cycle is completed infour steps;

i. Creating the'C' source code

ii. Compiling the source code

iii. Linking the compiled code

iv. Running the executable file

lx.

x.

,r{i;, C Programming o An Overviewof C ffi

file.exe a.out

Flgure 1.3

Type the Program

ffi
(object l.q/
6vv

ll.

C Programming An Overuiew of C (),
||tttotl

Creating the source code: Any editor or word processor can be used to create the source code.

The file containing the source code has to be a 'text' file with an extension .C most compilers

come with a built in editor. On UNIX, the editors like vi, emacs, etc. can be used.

Compiling the source code: The pre-processing is the first step in the compilation. The source

code is given to the pre-processor (Pre-processor is a system program that modifies a C program

prior to its compilation) which checks for special instructions (preprocessor directives) in C
program (line beginning with # provides an instruction to the preprocessor) and performs other

tasks to give the pre-processed code.

The compiler then converts this code to binary code (object code). On UND(systems, the object

code has an extension .O and on o.thers it is .obj.

Several compilers have been developed for C. Some of the commonly used ones are: Microsoft

C, Borland C, Turbo C, GNU C. Programs can also be compiled on UND(by the CC compiler.

Linking the object code to create an executable code: The object code of the program has to

be linked with the object code of precornpiled routines from libraries. The linker creates a file
with .exe extension.

Executing the program: Once the executable file is created, you can run it by typing its name

at the DOS command piompt or through the option provided by the compiler software. If the

desired results are not achieved, changes may have to be made to the source code. When the

source code is changed, it has to be recompiled and linked to create the correct executable code.

In.

lv.

1.5 THE FORM OF A C PROGRAM

All C programs will consist of at least one function, but it is usual (when your experience grbws) to

write a C program that comprises several functions. The only function that has to be present is the

function called main.

For more advanced programs the main function will act as a controlling function calling other

functions in their turn to do the dirty work! The main function is the first function that is called when

your program executes.

C makes use of only 32 keywords which combine with the formal syntax to form the C
programming language.

Note that all keywords are written in lower case - C, like UNIX, uses upper and lowercase text to

mean different things. If you are not sure what to use then always use lowercase text in writing your C

progranm. A keyword may not be used for any other purposes. For example, you cannot have a

variable called auto.

Urr', C P.ogrurmhg . A, On".i"rof C ffi
1.6 STRUCTURE OF A 'C' PROGRAM

The basic building block of every C program is Function.

A function is nothing but a module or a subprogram, which performs some task. It may accept
some information and may return a single output.

The function main

. Every C program consists of one or more functions one of which is the function called main.

. Program execution begins from this function and ends when the instructions in the main
function have been executed.

o The basic structure of a 'C' program is as shown below:

Documentation Section

Link Section

Definition Section

Global Declaration Section

Function Sect'on
main0
It

Declaration Part
Executable Part

Subprogram Section

Function 1

Function 2

Function n

USET

defined
functions

The documentation section consists of comment lines (enclosed in /* and */), which are used to
eonvey program information and other details,

Note: Carwnents ean be put anywhere within the program,

The link section giveo instnretions to the eompiler to link lib,rary files and other ueer filee,

The definition cestion defines cll symbolie eonstantc,

Some variables nc€d io be uged in all funetionc, Sush vsriables arc deelared in the global
declaration ce€tion,

Every C pogrem must have one main() funetion, It eonsicts of loeal dcelaration (informetion
uccd only within mein) end "e" $atcments, All rtatemenB cnd with e scndsoloR,

a

a

a

ffi C Programming An Overuiew of C O"
ut*toll

The sub-program section contains all user-defined functions that are called in the main function.

The subprogram section may also appear before main() although it is normally placed
immediately after main().

Sample'C'Program
To display the following message on the screen.

Hello!

Explanation

i. Line 1 is a'C'comment. A comment is used to give additional information about the program. It
has to be enclosed in /+ and t/. Comments are ignored by compiler.

Comments can be written anywhere in the program and are used for documentation. They
cannot be written inside one another (nesting).

Example: /* First comment/* Second Comment */*/is invalid.

ii. Line 2 is a blank line. A program can contain any number of blank lines. This improves
readability of the program.

iii. Line 3 is the link section and it tells the compiler to include information about the specified file,
i,e., Standard Input - Output functions. The #include directive gives the program access to a

library. A library is a collection of useful functions and symbols that may be accessed by a
program.

The ANSI (American National Standards Institute) standard for C requires that certain standard
libraries be provided for evety ANSI C implementation, A e system may expand the numbor of
operations availeble by supplying ndditional librariesl an individual programmer ean also sreate
libraries of funptionn, Each librnry has a standard header flle whose name eRds with the
symhols,

The finclude dlroctivc crruse$ the preprocossor to insert dcfinitions from a standard headcr filE
into a program beforc compilation.

Hello!

Welcome to C

The directive

#include <stdio.h> i* printf, scanf definitions */ notifies the preprocesor that some names used
in the program (such as prinft, scanf) are found in the standard header file <stdio.h>.

iv. Line 4 is the beginning of the main() function. It is the only compulsory and the most important
function of any C program.

v. Lines 5 and'l arc the opening and closing braces of main. These braces contain the instructions
to be executed (statements).

vi. Line 6 is the only statement in the function. It is a call to another function called printf, which is
an output function. Its job is to display the provided information on the screen. The definition of
this function is in the standard input output library stdio.h. Hence we have included that file in
the program.

vii. The sequence of characters enclosed in " " is called a string which is displayed on the screen as
it is.

viii. \n is a special character (although it is composed of two characters) called the newline
character. This character advances the output to the next line.

printf does not supply a new line automatically. Hence multiple print() statements are used. So,
the following printf statements:

fiiti,+ii.i#'iili
in!.v.fl*1
!1.+t&]8\l

Tif',ffi,ffi,-

will ve the following output

We can introduce the new-line character in the string
statements will now look like.
printf (rrWelcome to \n C") ;

This is analogous to writing
printf (r'Welcome to \nrt) ;
nrinf €/l/rrr\.y!frrur \ v t ,

the appropriate position. The printf

1,7 COMPILERS I\ND INTERPRETERS
Programs written in a high level language have to be converted into machine code in order to be

oxeeuted. The software which does this translation is called a Compiler or Interpreter, Some high level
languages use a compiler whereas some use an interpfeter.

Flgurr 1.{

Itfir,liil

Welcome to C

ffi C Programming An Overview of C (.),
ulSt0tl

Difference between Compiler and Interpreter

I.8 EXECUTING A 'C' PROGRAM

Executing a program written in C involves a series of steps. These are:

i. Creating the program

ii. Compiling the program

iii. Linking the program with functions that are needed from the C library and

iv. Executing the program

Figure 1.4 illustrates the process of creating, compiling and executing a C program. Although these

steps remain the same irrespective of the operating system, system commands for implementing the

cteps and conventions tbr naming files may differ on different systems.

An operafing Bystem ie a prograrn that eontrols thc entire operation of a eomputcr system. All
inpuUoutput operationo are ehannclled through the operating systcm, The operating cyct€m whieh ie an

interfaee t efwe€n the hardware and the user, handle the exeeution of user programc,

The two nnost popular operafing flyst€ns today are UNIX (for minieomputcrc) and MS-DOS (For

microcomputoro). lVe ehall diceucs briefly the proeedure t,0 bc followcd in exeeuting C programs

under both these oporating Byctcms in thc following seetion.

iaiitiii

ifl:
',,,.;tl

L

1
A compiler takes the entire program and generates
the object code for the program.

An interpreter takes a single instruction of the
program, converts it to object code and executes it.

2. An intermediate object code file is created. No intermediate file is created.

e Once the object code is created, the program need
not be compiled every time before execulion.

Every time a program is executed, conversion from
high level to machine code has to be performed.

4.
A compiled program executes faster especially if
the program contains loops.

An interpreter is slower than a compiler.

The compiler is not involved in the execution of the
program.

An interpreter also executes the instruction.

6.
There is more memory requirement since object
files are created.

Memory requirement is less.

7.
A list of errors is generated after the entire program
is checked.

Errors are displayed for every instruction interpreted.
.'. Debugging is easier.

8. PASCAL, C use compilers. BASIC has an interpreter.

ur#;n CProgramrning . AnOverviewofC ffi

Executable oblect code

Figure 1.5

Execution of C Program on UNIX and DOS

Unix System

Creatlng the Program

Once we load the LJND(operating system into the memory, the computer is ready to receive

program. The program must be entered into a file. The file name can consist of letlers, digits and

special characters, followed by a dot and a letter c. Examples of valid file names are

W C Programming An Overuiew of C ()"
ulSttrll

hei1o. c
program. c
al.ra-l

^

The file is created with the help of text editor, either ed or vi. The command for calling the editor
and creating the file is

ed fllename

If the file existed before, it is loaded. If it does not yet exist, the file has to be created so that it is
ready to receive the new program. Any corrections in the program are done under the editor.

When the editing is over, the file is saved on disk. It can then be referenced any time later by its file
name. The program that is entered into the file is known as the source program, since it represents the
original form of the program.

Compiling and Llnking

Let us assume that the source program has been created in a file named ebgl.c. Now the program is
ready for compilation. The compilation command to achieve this task under UNIX is

cc ebg1. c

The source program instructions are now translated into a form that is suitable for execution by the
computer. The translation is done after examining each instruction for its correctness. If everything is
alright, the compilation proceeds silently and the translated program is stored on another file with the
name ebg 1.o. this program is known as object code.

Linking is the process of putting together other program files and functions that are required by the
program. For Example, if the program is using exp0 function, then the object code of this function
should be brought from the math library of the system and linked to the main program. Under UNIX,
the linking is automatically done if no errors are detected when the cc command is used.

If any mistakes in the syntax and semantics of the language are discovered, they are listed out and
the compilation process ends right there. The errors should be corrected in the soulce program with the
help of the editor and the compilation is done again.

The compiled and linked program is called the executable object code and is stored automatically
in another file named a.out.

Note that some systems use different compilation corlmand for linking mathematical functions.
cc fil-ename-l-m
is the command under UNIPLUS SYSTEM V operating system.

Executing the Program
Execution is a simple task. The command
a. vuL

would load the executable object code into the computer memory and execute the instructions.
During execution, the program may request for some data to be Lntered through the keyboard.
Sometimes the program does not produce the desired results. Perhaps, something is wrong with the
program logic or data. Then it would be necessary to correct the source pro$am or the data. In case
the source program is modified, the entire process of compiling, linking and executing the progam
should be repeated.

u,fili c programming o An overview ot c ffi
Creatlng your own Executable Flle

Note that the linker always assigns the same name a.out. When we compile another program. this
file will be overwritten by the executable object code of the new program. If we want to prevent fiom
happening, we should rename the file immediately by using the command.

mv a.out name

We may also achieve this by specifying an option in the cc command as follows:

cc-o-name source-file
This will store the executable object code in the file name and prevent the old file a.out from being

destroyed.

Multiple Source Flles

To compile and link multiple source pro$am files, we must append all the names to the cc
command.

cc f iLename-L . c...... f i.Lename-n. c

These files will be separately compiled into object files called

Filename-i . o

And then linked to produce an executable programs file a.out as shown infigure 1.5.

It is also possible to compile each file separately and link them later.

For example, the command

cc-c mod1. c
cc-c-mod2 . c

We may also combine the source files and object files as follows:

cc modL . c mod2. o

Only mod1.c is compiles and then linked with the object file mod2.o. This approach is useful when
one of the multiple source files need to be changed and recompiled or an already existing object files
is to be used along with the program to be compiled.

Compiler and
preprocessor

Flgure 1.6

MS-DOS System

The program can be created using any word processing software in non-document mode. The file

name should end with the character ".c" like pfogram.c, pay'c, etc. Then the command

MSC pay. c

Under MS-DOS operating system would load the program stored in the file pay.c and generate the

object code. This code is stored in another file under name pay.obj. ln case any language elrors are

found, the compilation is not completed. The program should then be corrected and compiled again'

The linking is done by command

LINK pay.obj

which generate the executable code with the filename pay.exe. Now the command

would execute the program and give the results.

1.

2.

3.

ExERCISE
'C'is middle level language. Comment.

What are the features of C programming?

Describe the process of creating and executing a C program under I-IND(system.

(,t'
ul$r0tl

Voriobles, Dqto Types,
erqtor And Ex ression

2.1 INTRODUCTION
A programming language is designed to help process certain kinds of data consisting of numbers,

characteri and strings anA to provid- useful output known as information. The task of processing of
data is accomplished by executing a sequence of precise instructions called a program. These

instructions are formed using certain symbols and words according to some rigid rules known as

syntax rule (or Grammars). Every program instruction must confirm precisely to the syntax rules of
the language.

In this chapter, we will discuss the concepts of constants and variables and their types as they

related to C programming language.

2.2 CHARACTER SET

The C character set consists of upper and lowercase alphabets, digits, special characters and white

spaces. The alphabets and digits are together called the alphanumeric characters.

i. Alphabets

A B C2
abc.2

L/,
urSr0tl

ffi C Programming Variables, Data Types, Operators and . . .
().

ur$oi

ii. Digits

01,234567 89

iii. Specialcharacters

,i:#rrt!l
iv. White space characters

Blank space, new-line Sn), carriage return (\r), form feed (\f), horizontal tab 0t), vertical
tab 0v).

2.3 C TOKENS
The smallest individual units in a C program are called tokens as shown below.

Figure 2.1

We shall be studying each of these in the sections to coms.

2.3. I ldentifiers and keywords
Every C word is classified either as an identifier or a keyword.

I d en tifie r

An iclentifier is a user-defined name given to a program element-variable, function and symbolic
collsuults.

There are certain rules, which shoul.d be followed while naming an idenffier. They are:

i. Identifier names must be a sequence of alphabets and digits and must begin with an alphabet or
an underscore (_).

ii. No special symbols, except an underscore (-) are allowed. An underscore is treated as a letter.

iii. Reserved words (keywords) should not be used as an identifier

()- _ $ o/o & A * + t I /\

or{l;, C Progr"rrirg . v"ri"tt"r, D^t"Typ"r, Op"r"tor,
"rd

. .W

iv. C is case sensitive, i.e., C treats uppercase and lowercase letters differently. It is a general

practice to use lower (or mixed) case for variables and function names and uppercase for
symbolic constants.

v. For any internal identifier name (an identifier declared in the same file) at least the first 31

characters are significant in any ANSI C compiler.

Examples of valicl identifiers: Rate -of- interest, add - matrix, Sum, P[,

Month _of _Year, aI23

Keywords

Keywords are reserved words and are predefined by the language. They cannot be used by the

programmer in any way other than that specified by the syntax. ANSI C language has only

32 keywords. They are:

ANSI C Standard Kepvords

auto double Int struct

break else Long switch

case enum register typedef

char extern return unton

const float Short unsigned

continue for signed void

default goto sizeof volatile

do if static while

The following are additional keywords in Turbo C.

asm ES Far near

cs ss Huge pascal

ds cdecl interrupt

2.3.2 Constants

Constants refer to fixed values that do not change during program execution. They

classified as:

i. Integer constants

ii. Floating point constants

iii. Charactersconstants

iv. String literals

v, Enumeration constants

can be

W C Programming Variables, Data Types, Operators and . . . O.
crstott

t. Integer Constants

An in0eger constant refers to whole numbers. It can be specified in. three ways:

a. Ordinary Decimal number (base 10)

b. Octal number (base 8)

c. Hexadecimal number (base 16)

An integer constant has to follow thefollowing rules:

1. It contains a sequence of digits from 0 to 9. (Octal contains digits from 0 to 7;
Hexadecimal constant contains digits from 0 to 9 and let0ers A-F).

2. An octal constant is preceded with '0' and hexadecimal constant with 0X or 0x.

3. No commas, spaces or other symbols are allowed in between,

4. The integer can be either positive or negative. It may or may not be prefixed by a + sign.

5. A size or sign qualifier can be appended at the end of the constant.

U or u for unsigned

S or s for short

L or I for long

Examples

123 56789U (unsigned integer)

-31 000 76899091 (long integer)

01 70 0x34ADL (long hexadecimal)

0x2A 6578890994UL (unsigned long integer)

-100 s 120US (unsigned short)

Note: The ANSI C standard supports a + sign before the positive integer corresponding to the -
for a negative integer although it is rarely used.

Floating Point Constants

These are real numbers having a decimal point or an exponential or both. The rules governing
the floating point representation are:

a, They have a decimal point and digits from 0 to 9.

b. No embedded spaces, commas and other symbols are allowed.

c. They may or may not be prefixed by a - sign.

d. It is possible to omit digits before or after the decimal point.

Examples: 0.246 975.64 -.54 +5.

Exponentlal notatlon
This is used to represent real numbers whose magnitude is very large or very small.

The format is: mantissa e exponent
Or

mantissa E exponent

il.

ilt.

(?: C Programming ' variables, DataTypes, operatorsand ffi

1. The mantissa can be a floating point number or an integer.

2. It can be positive or negative.

3. The exponent has to be an inieger with optional plus or minus sign'

Example

The number 231.78 can be written as 0.23178e3 representing 0.23178 x 103.

75000000000 can be written as 75e9 or 0.75e1 1. 0.0000045 can be written as 0.45e - 5.

Character Constant

A character constant is any single character from the C character set enclosed within single

quotes.

Emmple: 'a' '#' '2'

The value of the character constant is the numeric value of the character.

Example:The character constant '0' has ASCII value 48, which is unrelated to numeric digit 0.

Escape sequences

C supports some special characier consknts used in output functions. They are also called

backslash character constants because they contain a backslash and a character.

Although they look like two characters, they represent only one.

Complete set of escape sequence is:

#"lfi#ri. ill |.i11i!1i:.i.l;1ii.,i111:;:l:::l:i;;j;;:iijl]ijrri;ijirij1ri]friLj'illjit$..af161i|1,1i;1iieii'lli.l

\a alert (bell)

\b backspace

\f form feed

\n newline

V carriage return

\t horizontal tab

verticaltab

\0 null character

backslash

\? question mark

single quote

double quote

\0 octal number

\xN hexadecimalconstant (where N is hexadecimal constant)

\N octal constant (where N is an octal constant)

ffiw C Programming Variables, Data Types, Operators and . . .
(^

uttni

iv. String Literals

A string constant or string literal is a sequence of zero or more characters enclosed in double

quotes.

Example: "Welcome to C"

"First Line \n Second Line!'

The double quotes are not a part of the string but only act as delimiters. If the backslash or
double quote is required to be a part of the string, they must be preceded by a backslash S).

Example: printf("He said \uHello \u "); //wiIL display

He said 'rHellorl
printf("\\ is a backslash"); //displays

\ is a backslash

Technicalty, the internal representation of a string has a null character (\0') at the end. Therefore
the physical storage required is one more than the number of characters in the string.

Dlfference between'a' and "a"

'a' is a character constant and stored as the numeric value of a. "a" is a string literal and consists

of the characters. a and '\0'.

byte byte

Enumeration Constant

An enumeration is a list of constant values - each can be represented by an integer.

It is a user defined data type with values ranging over a finite set of identifiers called

enumeration constants.

Example: enum color{red, b}ue. green};

Red, blue and green are constants, which represent the integer values of0, 1 and 2 respectively.

Values can be explicitly specified for the identifiers.

enum colortred = 10, blue, green = 30lt

Here, blue is assigned number 11. If no value is specified for green it will assume the value 12.

Enumerations provide a convenient way to associate constant values with names. It also makes

the program easy to read and understand.

'a'

fAl
1 byte

"a"

Y.

A \0

Ur{li, C Progr"^^ing . V"ri"bt"r, D"t"Typ"r, Op"r"tor""nd..W&

2.4 DATA TYPES IN C
Programs work by processing data. A programming language must give you a way of storing the

data. Associated with the data is its type.

When a variable is used, you have to specify what type of data it can contain.

The C programming language supports the following data types:

int float double char void

They are called basic or fundamentals data types. In addition, C also supports the enumerated data
type specified by the keyword enum.

2.4.1 Fundamental Data Tyoes

The size allocated for an integer depends upon the compiler. The size of a data type can be
obtained by using the sizeof() operator which gives the size of the specified data type in bytes.

Usage: sizeof (data_t.ype)

Emmple: printf (u?du, sizeof (char)) ;

2.4.2 Qualifiers
A qualifier, when applied to a data type alters its size or sign.

short signed

long unsigned

Normally, short and long cannot be applied to char and float and signed and unsigned cannot be
applied to float, double and long double.

Fundamental Data Types

-128 to 127

2 (16 bit machine)

-2,147,483,648
2,147,483,647

A single precision floating
point number
(6 precision digits)

3.4 e-38 to 3.4 e + 38

A double precision
floating point number ,

(14 precision digits)
1.7e-308 to 1.7e +308

W C Programming Variables, Data Types, Operators and . . .
(

u|ll0tl

ANSI C has the following ruIes:

short int < = int < = long int

float < = double < = long double

The data types, siles and their ranges are as shown in the following table:

All possible Data types In C (baslc and qualified)

char char 1 -128 to 127

signed char 1 -128 to 127 .

unsigned char 1 0 to 255

int int 2(16 bit m/c) -32768 to 32767

4(32 bit m/c) -2147483648 to 2147483647

short int 2 -32768 to +32767

long int 4 -2147483648 to 21 47 483647

unsigned int 2('16 bit m/c) 0 to 65535

4(32 bit m/c) 0 to 4294967295

unsigned short int 2 0 to 65535

unsigned long int 4 0 to 4294967295

float float 4 3.4E - 38 to 3.4E + 308

double double 8 1,7E-38 to 3,4E+38

long double 10 3.4 E - 4932 to 1.1E 4932

Note: The exact size allocated and the ranges for these data types can be obtained from constants

defined in header files <limits.h>. <float.h> and <values.h>.

2.4.3 Enumerated Data type

A user defined data type along with its set of identifiers can be created by the following
declaration:
enum data-type-name {consttL, constt2,*.-.1 i

Example: enum daysofweek {Sun, Mon, Tue, Wed, Thu, Fri, Sat};

2.4.4 void Data Type

void is an ernpty data type defined by the keyword void. It is used with functions.

When used as a function return type, it means that the function does not return anything.

Example: void calculate-and-display(int a)

When used in place of the parameter list, it indicates that the function does not accept any

information.

Example: int random-number (void) i
We shall be dealing more with void data type in the book.

ur?rf, C Programming o Variabtes, Datat o"t orl@

2.4.5 Creating New Data-types Names

C provides a facility called typedef for creating new data type names.

Thesyntaxoftypedefis typedef data-type synonym

Forexample, thestatement, typedef unsigned long ulong;

declares ulong as a new data type equivalent to unsigned long. It can be used in exactly the same

way as the type unsigned long can be.

Example: typedef int Length;

makes the name 'length' a synonym for int.

o It is important to understand that a typedef statement does not create a new type in any sense; it
merely adds a new name for some existing type.

. Use of typedef enhances program readability.

2.5 VARIABLES

A variable name is an identifier or symbolic name assigned to the memory location where data is

stored. In other words, it is the data name that refers to the stored value. A variable can have only one

value assigned to it at any given time during pro$am execution. Its value may change during the

execution of the progtam.

Rules regarding naming variables:

i. Since the variable name is an identifier, the same rules apply.

ii. Meaningful names should be given so as to reflect value it is representing.

student_name rank 1

2.6

basic-sal amount

roll_num No_ofjears

DATA DECLARATIONS AND DEFINITIONS

Programs operate on data. The data items, which a program manipulates, can be divided into two

classes:

i. Constants

ii. Variables

While variables take different values at different points in time as the program executes, constants

have fixed values. These must be declared before they are used.

ffi c P'og'"tt'g t y""bbl"", D,r" ryp"", op".,ro,",d.. .
u,/2"

2.6,a Declaring Variables
All variables used in the program must be declared at the beginning.

A variable can be used to store data of any data type irrespective of what the variable name is. A
variable is declared by the following syntax:

Storage cLass Data_type var1, var2,....... . , varn

where varl to varn are variable narnes separated by commas. We shall study about storage classes
in later.

Example: int marks, agei

float amounti

Declaration does two things:

i. It informs the compiler the name of the variable.

ii. It specifies what type of data the variable will hold.

There are three basic places where variables will be declared:

a. Inside functions: Local variables

b. In the definition of function parameters: Formal parameters

c. Outside all functions: Global variables.

Local variables

These variables are also calied automatic variables (keyword 'auto' may be used to declare
them), They can be used only within the block where they are declared. A local variable is
created upon entry into the block and destroyed upon exit.

Example: Consider two functions as shown

funcl ()

{ int. x;
x : lvi

i

func2 ()

{ int x;
x = 100;

)

Here, x has been declared twice but the variable x in funcl() is not related to the variable x in
func2(). Both are independent and exist only within their respective functions.

Formal parameters

If a function is to accept data, it must use arguments and declare them to accept values. They
behave like any other local variable inside the function

a.

b.

c.

ur?rf, C Programming o Variables, Data.Types, Operatorsand ffi
Example: sum(lnt a, int b)

1

3) functj-on body

)

Hete, sum is a function which accepts two integer values in variables a and b. It could also be
written as follows:

sum (a, b)
IIIL q,

int b;
{

function body
)

We shall be studying formal parameters in detail in the Chapter Functions'.

Global Variables

Unlike local variables, global variables exist and can be used anywhere in a program. They may
be accessed by any expression regardless of what function the expression is in.

They are created by declaring them outside any function.

Example: int count i /* count is globat */
main ()

{ count = 200;
funcl () ;

)

funcl ()

{ count = 300 i
]

I nitializing Variables

Assigning values to variables during declaration is called initialization.
Example: int i:5;
This statement not only declares the variable i but also assigns the value 5 to this variable.

Multiple variables can also be initialized.

Exatnple: int sum = 0, i = 10;

2,6,2 Defining Constants
A constant can be declared in C by two methods:

i. Using const qualifier

ii. Using the #define preprocessor directive.

ffi C Programming Variables, Data Types, Operators and . . . 0,
utflotl

const is a qualifier that can be applied to a data item of any data type. The contents of this data

item cannot be changed during program execution only assigned at the time of declaration
(initialized)

Syntax: cons data-type constant name = value;

Example: const float pi = 3.142;
const char quit = tqt;

Another method of defining constants is by using a pre-processor directive #define. The #define

directive works as follows:

#define CONSTNAME literal
This creates a constant named CONSTNAME, which represents the constant value of the literal.

By convention, the constant name is written in uppercase.

Example: #def ine Pr 3.L42
*oer l-ne r KU.E; l

Any occurrence of PI in the program is replaced by the literal3.142.

2.7 USER DEFINED TYPE DECLARATION
ln C language a user can define an identifier that represents an existing data type. The user defined

datatype identifier can later be used to declare variables. The general syntax is

typedef type identifier;
Here type represents existing data type and 'identifier' refets to the 'row' name given to the data

type.

Example: typedef int salary;
typedef fl-oat averagei

Here salary symbolizes int and average symbolizes float. They can be later used to declare

variables as follows:

Salary dept1, depL2i
Average sectionl, section2i

Therefore deptl and dept2 arc indirectly declared as integer datatype and sectionl and section2 are

indirectly float data type.

The second type of user defined datatype is enumerated data type which is defined as follows:

Enum identifier {vaLue1, va1ue2 vaLuen} i

The identifier is a user defined enumerated datatype which can be used to declare variables that

have one of the values enclosed within the braces. After the definition we can declme variables to be

of this 'new' type as below.

enum identifier V1 , Y2, V3, Vn

ur{li, CProgramming o Variables,DataTypes,Operatorsand. ffiW
The enumerated variables V1. V2, Vn can have only one of the values valuel, value2

valuen.

Example:

2.8

enum day {Monday, Tuesday, Sunday};
enum day week_st, week_end;
week_st = Mondayi
week_end : Friday;
1f (week_st =: Tuesday)
week_end = Saturdayi

OPERATORS AND EXPRESSIONS
An operator is a symbol that represents an operation. It instructs the compiler to perfom some

action on one or mofe operands.,

Example: The symbol + reptesents addition.

An expression is a combination of variables, constants and operators written according to the
syntax of the language. In C, every expression evaluates to a value, i.e., every expression results in
some value of a certain type that can be then assigned.

Examples of expressions: a + b
PI*r*r
(x+y)-2.

An operator can bo lrnary, hinary or ternary depending on whether it operates on one, two, or
three operands respectively.

Operators can be classified according to the nature of operation they perform. The different
categories are:

i. Arithmetic operators

ii. Relational operators

iii. I ogical opemtors

iv. Increment and decrement operators

v. Bitwise operators

vi. Assignment operator

vii. Conditionaloperators

viii. Other operators

Operator Precedence Hlcrarchy and Arrocletlvlty
If an exprcssion contains more than one operator, the important question is what is the order of

evaluation? Some rules are needed to specify the order in which operations are per{ormed. These rules
are called Operator Precedence or l{ierarchy rules.

Precedence states the relative importance or priority of operators with respect to other Dperntor\.

W C Programming Variables, Data Types, Operators and . . .

Another possibility is that an expression may contain more than one operator having the same

priority. Here, the associativity specifies the order of evaluation of operators having the same

precedence or at the same hierarchy level.

2.8. I Arithmetic Operators

These perform arithmetic operations. C provides five arithmetic operators.

$W!,fift.#t:ji i:1il#n$W#iti'i .,,;: Fgmhfk :' r:..f .,',:f:;,.::j..,,i,ri,r,'r1.',ilr.:,

T Addition Can also be used as unary plus

Subtraction Also used as unary minus

Multiplication

Division
o/ Modulo Division Can be used only on integer data type

Note: C has no operator for exponentiation. (The function pow(x,y) in math.h can be used to
calculate xY).

o The unary minus operator has the effect of multiplying the operand by -1.
o The unary plus, which was added later, gives the value of the operand.

r Arithmetic operations performed on integers (integer arithmetic) yields an integer values.

Example: 16+5 = 21

16-5 = 11

16*5 = 80

16/5 = 3

5/2 = 2

16Vo5 = 1

-16 Vo 5 = -1 (remainder aftel division and the sign is of the first operand)

e Arithmetic operations performed on float operands (float arithmetic) yield a float result, which
is rounded off to the number of significant digits permissible.

Example: 5.0+2.0 = 7,0

5.4l2,A = 2,5

-2.0/3.0 = -0.666667

r When the operands are of diffcrent data types (mixed mode arithmetie), the result is promoted

to thc 'higher' data type, (char < int < float). Thus if one operaRd is an integer and thc other

float, the result will be of float type.

Exrrmple: 5,A / 2= 2,5

(,k
utttorl

ut{lfn C Programming o Variables, DataTypes, Operators"no ffi
Hierarchy of Arithmetic Operators

Areoclalfvlty

L-+R
t- L-->R

Example: Consider the integer expression

5/2+4-6*2+2515-314
The order of evaluation is as shown:

5/2+4-6*2+25/5-314
2+4-6*2+25/5-3/4
2+4'12+2515-3/4
2+4-12+5-314
2+4-12+5-0
6-12+5-0
-6+5-0
-1-0
-l

Note: In order to override the operator precedence rules, parenthesis can be used. Since parenthesis
have higher priority over operators.

Example: ln the expression (4+5) * 6, the addition will be done first even though + has higher
precedence since the addition operation is parenthesized.

2.8.2 Relationai Operators
Relational operators are used to compare expressions. An expression containing a relational

operator evaluates to either True (1) or False (0).

Any non-zero value is considered 'True' in C and 0 is false. Thus, even negative values are True!

The six relational operators are

:,ffirh!u#:i |r,;riliiiiiii: jli Hoiififfi#iliiii:i*
Less than

<= Less than or equal to

Greater than

>= Greater than or equal to

Equal to (equality)

Not equal to (lnequallty)

These operators are mainly
pfogram. These operatofs are
presedenee is

used in decision-making statements
lower in preeedenee than arithrnetie

< {r >>r I L-rR
rr l. I t-rR

ts decide the course of action in a
operatofs. Arnong themselves, the

W C Programming Variables, Data Types, Operators and . . .
()'

utStotl

Examples

25<30 True

2.5<= 2.5 True

'a'== 97 True

'b'<'a' False

(a+b) l= (x+y) True if the sum of values of a and b is not equal to the sum of values of x and y

2.8.3 Logical Operators
Sometimes, we need to test more than one condition at a time and make a decision depending upon

the result.

The logical operators are used to combine two or more expressions (usually relational). The entire
expression is called logical expression which evaluates to True (1) or False (0). The three logical
opefators in C are:

,,S-,perfrleti ,,,Meanln$,1

&& LogicalAND
Binary operators

ll LogicalOR

LogicalNOT Unary operator

Evaluation of a logical expression stops as soon as a true or false result is known.

The results of logical AND (&&) and OR (ll) operators for different combinations of the trvo
operands is given in the following truth table:

.,:,Opt,',i . ona.l
False False 0 0

False True 0 1

True False 0 'l

True True 1 I

Examples: (marks > = 60) && (marks < 70)

age > 60 ll salary > 10000

The logical NOT (!) operator takes a single expression and reverses the
i.e., if the expression is True, the ! operator evaluates to false and vice-versa.

Example'. !(5 < l0) evaluate to 0 since 5 < 10 is True.

Frecedence and Associativity of Logical Operators

value of the expression,

Note: ! has higher priority than arithmetic and relational operators, but && and ll have lower priority
than both.

Q: c Programming ' variables, DataTypes, operators"no "wut$r0i ffi

2.8.4 Increment and Decrement operators
C provides two useful unary operators not generally found in other languages; increment and

decrement operators. They are:

is#iffit$r il ,111i1iiili#enf{s

++ Increment

Decrement

They can be used in 2 ways:

i. Prefix: The operator is written before the operand. The increment or decrement is done before
the value of operand is used in an expression.

Example: ++n,--x
ii. Postfix: The operator is written after the operand. The increment or decrement is done after the

operand value is used in ar.t expression.

Example: n++,x--
Note: When used independently, the prefix and postfix forms make no difference but they behave

differently when used in expressions on the right hand of an assignment statements.

Example: If n is 5, then the statements ++n; and n++; both increment the values of n by
1 and are equivalent to n= n*1; However, in the slatement,

y=n++;n increments after its value has been assigned to y, i.e., y is given the value 5 and then n
becomes 6. Whereas y=++n first increments n to 6 and 6 is then assigned to y. The same logic applies
to the decrement operator.

Examples

1. If x=0 and y=g
z=*tx | | ++y;
will result inz=I, x=1, y=0.

Since ++x increments x to 1, the result of OR is True. Hence ++y will not be evaluated.

2. z=x++ && ++y

Result: z-0,x=I,y=Q

x++ is post increment. The old value of x, i.e., 0 will be used. Hence the result of && is 0.

Thus, ++y will not take place.

3. x++ &&++y llz++

If values of x, y and z arc 0,1 and 0 respectively, the expression evaluates to 0 and values of x, y
and z becomes 1,1 and 1 respectively.

The && operation is performed before ll. For the && the initial value of x, i.e., 0 is used. ++ y
will not be evaluated since the result of the && operation is known to be 0. For the ll operation,

one operand is 0 and so the other operand is evaluated. The old value of z (i.e., 0) is used since

it is post- increment. .'. 0ll0 yields 0 and z then increments to 1.

W C Programming Variables, Data Types, Operators and . . . _^_(/:
ulSl0ll

2.8.5 Bitwise Operators
C has a distinction of providing six operators for manipulation of data at bit level. They are applied

only to integral operands, i.e., char, short int and long whether signed or unsigned.

jrli-9.ep"#'ldli i1]ii1i11,i;r;l,r 6p6l6sf4p: : ,,,, , , ,

& Bitwise AND

Bitwise OR

Bitwise XOR

Left shift

Right shift

One's complement (Unary)

Except for - the others are binary operators and operate on coresponding bits of the two operands.

The bitwise XOR (exclusive OR) operator sets one in each bit position where its operands have

different bits and zero where they are the same.

Example: Assume that a and b are integers with values 13 and 7 respectively. Assuming that an

integer occupies 2 bytes,

a in binary

b in binary

a&b
alb
a^b

= 0000 0000 0000 1101

= 0000 0000 0000 0111

= 0000 0000 0000 0101

= 0000 0000 0000 1111

= 0000 0000 0000 1010

Shift Operators

The bit pattern of the data can be shifted by a specified number of positions to the left or right
using the left shift (<<) and right shift (>>) operators respectively. The shift operators perform shift of
their left operand.

When the data is shifted left, the trailing empty spaces are filled with zeros.

Similarly, the leading empty spaces ate zero filled when data bits are shifted right.

Exnmple: a = 0000 0000 0000 1101

= 0000 0000 0000 1000a<<3

zero filled spaces

a>>3 = 0000 0000 0000 0001

(The rightmost three bits drop off)

The general syntax is operandl shifc-operator operand2

or{lin C Programming o Variables, DataTypes, or"ruroll
"nr, -W

Note: Shifting by one position to left is effectively multiplying the operand by two.

Shifting right by one position divides the operand by two.

One's Complement Operator
The - operator yields the one's complement of an integer, that is, it inverts each bit of the operand

(1 to 0 and vice versa)

Example: If a = 0000 0000 0000 I 101

-a = 1111 1111 1111 0010

Precedence

- is along with other unary operators like **, -- and ! in hierarchy with R -+ L associativity.

The shift operators have higher precedence as compared to Bitwise AND, OR and XOR.

2.8.5 Assignment Operator
The assignment operator = is used to assign the value of an expression to a variable. The syntax is

variable : expression

An assignment expression followed by a; becomes an assignment statement.

Example: sum:a+10;
The expression a + 10 is evaluated and its value is assigned to variable sum.

C : a << 3;
x=a*3 +b/5;

Shorthand Assignment Operators

These are obtained by combining certain operators with the = operator. They have the format

rrari:hl a ^nor1ato1.= eXpfeSSiOn;

C supports the following shorthand assignment operators:

+= -= /= Vo= ((=))= &= l=A=
Examples: x+=yi implies x:x+Yi

m /: 3; imPlies m : m/3;
a += b +1; irnplies a = a + (b + 1-)

Precedence

Assignment operators have the lowest priority so far with associativity R + L.

Example: Consider the statement
a=b=c;
Here, the value of c is assigned first to b which is then assigned to a.

i = j += k;
is also a valid assignment statement which is the same as

i : j = j + k;

W C Programming Variables, Data Types, Operators and . . o,
utStotl

2.8.7 Conditional Operators
This is the only ternary operator in C. The

expression of the form.

expressionl ? expression2 : expression 3

<-- Conditional expression -----+
expression 1 is evaluated first. If it is True (nonzero), then expression2 is evaluated and becomes

the resulting value of the conditional expression.

Ifexpression is 0 (False), the value ofthe entire expression is that ofexpression3.

Example: Let a = 10and [= 15,

larger = (a>b)? a : b;
Here larger will be assigned 15, i.e., the value of b.

This is the same as

1r (a>b)
Iarger = a;

else
larger = b;

2.8.8 Other Operators

Comma Operator
The comma ',' operator is used to separate a set of expressions. A pair of expressions separaled by a

comma is evaluated left to right and the type and value of the result are the type and value of the right
operand.

Example: Consideri = (j=3,j+2):
Here, the right hand side contains two expressions j = 3 andj + 2 which are evaluaied L -+R.

Thus 3 is first assigned to j and the value 3 + 2 is assigned to i.

It could also be used to interchange the values of two variables in a single sfatement as shown.

temp=4, a:b, b=temp;
The comma operator has the lowest precedence and associates from L + R.

sizeof Operator
This unary operator gives the size (in bytes) of the data-type or variable. The usage is

sizeof (data_typel
OR

qi zonf /nhiaaf \
\vvJvve/

operator ?: is used to construct conditionalpair

Variables, Data Types, Operators and .

Example: sizeof(char) gives the result as L

Example: printf ('Zd Zd', sizeof (int), sizeof (float)) ;

tyPecast operator

C provides a unary operator for explicit type conversion called cast operator.Its usage is

(type-name) exPres s ion

The expression is converted to the specified data type locally only for the purpose ofevaluation of

the expression.

Example: The ratio of number of males to the number of females in a town can be calculated as:

ratio = no-of-males / no-of-femalesi

Since no_of_males and no_of-females will be declared integers, the division of the two yields an

integer. So even if ratio is declared as a float, the fractional part is truncaled due to integer arithmetic

on the right. This can be solved by locatly converting one of the operands to a float so that the result of

division is a float.

ratio = (float)no-of-males / no-of-females;

Address (&) and Indirection (.) Operators

C provides two unary operators for manipulating data using pointers.

The & operator when used with a variable yields its address.

The * operator denotes indirection and returns the value of the object located at the address that

follow it.

We shall study more about these in later chapters.

Both these operators have a high precedence along with other unary operators.

The o and -) Operators

The . (dot) and -> (anow) operators are used to refer to individual elements of structures and

unions (covered in later chapters). Structures and unions are compound data types that can be

referenced under a single name.

[]and()
Parenthesis 0 are used to increase the precedence of operators inside them. Square brackets

perform array indexing, i.e., given an array, the expression within [] provides an index or subscript to

the array.

W C Programming Variables, Data Types, Operators and . . . 0.
ottrnl|

2.9 TYPE CONVERSIONS IN EXPRESSIONS
In C, conversion takes place in tv,o forrn:

i. Implicit type conversion ii. Explicit type Conversion

2.9.1 lmplicit Type Conversion
C permits mixing of conslants and variables of different types in an expression. C automatically

converts any intermediate values to the proper type so that the expression can be evaluated without
loosing any significance. This automatic type conversion is know as implicit type conversion.

During evaluation it adheres to very strict rules and type conversion. If the operands are of different
types the lower type is automatically converted to the higher type before the operation proceeds. The
result is of higher type.

i. If one operand is long double, the other will be converted to long double and result will be long
double.

ii. If one operand is double, the other will be converted to double and result will be double.
iii. If one operand is float, the other will be converted to float and result will be float.
iv. If one of the operand is unsigned long int, the other will be converted into unsigned long int and

result will be unsigned long int.
v. If one operand is long int and other is unsigned int then

a. If unsigned int can be converted to long int, then unsigned int operand will be converted
as such and the result will be long int.

b. Else both operands will be converted to unsigned long int and the result will be unsigned
long int.

vi. If one of the operand is long int, the other will be converted to long int and the result will be
long int.

vii. If one operand is unsigned int the other will be converted to unsigned int and the result will be
unsigned int.

2.9.2 Explicit Type Conversion
Many times there may arise a situation where we want to force a type conversion in a way that is

different from automatic conversion.

Syntax: (type-name) expression
Consider for example the calculation of number of female and male students in a class:
Rat io :f emale_student s /male_students
Since if female-students and male-students are declared as integers, the decimal part wilt be

rounded off irnd its ratio will represent a wrong figure.

Example: Ratio = (float) female_students / maLe_students
The operator float converts the female-students to floating point for the purpose of evaluation of

the expression. Then using the rule of automatic conversion, the division is performed by floating
point mode, thus retaining the fractional part of the result. The process of such a local conversion is
known as explicit conversion or casting a value.

{?: C Programming . Variables, DataTypes, Operators
"nO

.W
ut$oi ffi

2.l0 PRECEDENCE AND ASSOCIATIVITY OF
OPERATORS

The operators are listed in order of decreasing precedence. The operators grouped together in one

level have the same

'k*rt€lr :.,gp6ut0f, .#$soolalfvl,ttl

I
I

o Function call L-rR
tl Array element reference L-rR

Pointer to structure member reference L+R
t Structure member reference L-+R

41

Unarv Minus R-+L
+ Unary plus R+L

++ Increment R+L
Decrement R-rL
Logical negatio;r R+L
One's complement R-+L
Pointer reference (indirection) R-+L

& Address R-+L
sizeof Size of an object R-rL
(tvpe) Tvpe cast R-+L

J

Multiplication L--rR
Division L--rR
Modulo division L-+R

4
+ Addition L+R

Subtraction L-rR
Left shift L-rR
Rioht shift L-+R

6

Less than L--rR
<= Less than or equal to L-+R

Greater than L-+R
>= Greater than or equal to L+R

Equality L-+R
!= Inequality L-+R

8 & Bitwise AND L-+R
o Bitwise XOR L+R
10 Bitwise OR L-rR
11 && LogicalAND L-+R
12 II LosicalOR L-+R
13 2. Conditional L-+R

14
o/o- +- -=
&= A= l=
<< = >>=

Assignment R-;L

15 Comma L-rR

W C Programming Variables, Data Types, Operators and . . . ()"
utstnil

SOLVED PROGRAMS
1. /* find simple interest */

ffigffiffigffi.'*g=-
;iilig5$gfi.f;#**p*g$f'#r$gil#i#+-*i:p+**1,11t,11==+rli;i,liiiiiirl'l't.'r:: ::,,r,i,, ;#jr.iijf-iil+if#Fig
:li:fff$if#-fflr$f*$:I';.r.l.j1-t:lrjilT.iL.-i.]ii]lli.i:ilrii:l]'.ilj'li:li.l'ti.l-ii1''i.=tI1'.'l'L

; I #''ififfiHilfi;ifffiffi il+r'+
il#'ffi'

t=+++

Output
Enter the principal: 1000

Enter the rate of interest : 5

Enter the time in years : 4

Principal = 1000.00

Rate = 5.00

Time = 4.00

Simple interest is 200.00

, /* Compute surface area and volume of a cube t/
:!.:t:i

Qy c Programming t variables, DataTypes, aperators"'' ' ffiul$0il _ re
Cube is *2f bq:

;;';1,.,.t;
.r',1.,)):a t):t:'

:a 1:at'i

Output
Enter the side of cube: 3

Surface area ofcube is 54.00 sq. units

Volume of cube is 27.00 cubic units

/* leap year checking*l
';kv';

,iii.!4

1.N.1:iiii
:1

Output
Enter the five numbers

10 2s 38 59 13

Entered numbers are 10.00 25.00

Sum = 145.00

Averase = 29.00

38.00 59.00 13.00

ffi C Programming Variables, Data Types, Operators and . . . (?"
uttni

3.

Output
Enter the yeat 2004

2004 is a leap year

Enter the year:2005

2005 is not a leap year

What will be the output? Give explanation.

i" votd naino
{

constinta=5;
a++;
pzLntf (t'Sdtt, a);

l
Ans

This program displays one error to the programmer.

Error: Cannot modify a const object. This indicates an illegal operation on an object declared

to be const, such as an assignment to the object.

ii. votd matno
{

entn eoTour (green, red = 5, blue, *hite,
ye77os = 70, ptnk);

pttntt("$d*d$dtdtd*dnt gt..nt rcd, bluo, vhtto, yc!7ot, plnk);
,

Ans

This program displays total seven elrors, All enors are same type "Undefined variable",

Error: Undefined Variable greeR, blue, white, yellow, pink,

Because when you define the enum data type it must be under { } instead of (). Aeeording to

syntax it is wrong, So it clisplays seveR effors.

ur?rf, C Programming . Variables, DataTypes, Operators"r, ffi
trl. lnt maino

{ tnt P= -73 >> 7;
pttntf("8d", p) i

]
Ans

Output is -7
Because

-13 >> 1

=-13/21
4

iv. int matno
{ prlntf,(t'9d", prlnXf ("t * g t * 8t "5",,,6"r"));
I

Ans

Output is 11.

Printf function retums the sum of 5 and 6. And 7o*s leaves that many the blank spaces.

v. votd natno
t j,nt ar lr zi

X-y=Z=7i
z=++*, I I ++y tt **z;
Ptlntf("x = 8d Y=$d z = td", *r lt z);

l
Ans

0utputis:21 1

x=2y=72=7
2ll ++l results true therefore second paft of the statement is not checked and value of y will be
as it is, i.e., ! - 1 and x = 2. And the result of the logical statement is true, i.e., 1 which is again
compared with second part of the statement, i.e., | && ++1 which is again true so compiler
does not check second part of the statement. And the result of the logical statement is true.

vi. votd nrlno

tnt * t 0x7231;
tat Y : 0x56?8;
rrra0x5678;
y:y I 0x7291;
xf' ^yiptlntf ("lr\tr,
prlntf ('lr\t o,

x)i
flt

ffi C Programming Variables, Data Types, Aperators and . . . o,
ut$0tl

Ans

x=0x1234
x in binary = 1001000110100

y = 0x5678

y in binary = 101011001111000

x=x & 0x5678

= 10010001 10100 & 10101 1001 1 I 1000

x= 1001000110000

Value of x in hexa decimal x = 0x1230

y=y10x1234
Value of y in binary = 1010110011 11000

1234 in binary = 1001000110100

y =yl0xl234
= 101011001111000 I 1001000110100

= 101011001111100

y = 101011001111100

Value of y in hexa decimal= 567C

x=x^y
x=0x1230^567C
x = 10010001 10000 ^ 10101 1001 I 1 1 100

x= 100010001001100

x= 444C

Therefore x= 444C andy = 567C

Output = 444C 567C

ExeRctsEs
Answer the following:

Write equivalent C expressions for the following equations:

. a+b a-br. ffi-._ d
1

iii. S=ut+fat2
L

Evaluate the following C expressions:
\. 2514+3-7Vo3+2
iii. (-13 Vo 2) Vo (8*2) -7
v. 2* ((18/5) + (5x (1.5 +l)% (10-2-1)

Qr.
iv. f =;f +32

ii. 6.5 + (floa0 512 -3 Vo 8 * 6.5

iv, (18-3*3) % (99-2 *10) / (2.5*1.5)

ii, i*

Utf;il CProgramming t Variables,DataTypes,Operatorsand. ffi
3. Given that initially i = 0, j = 2 and k = 3,

following expressions:

i. x:i++ ll++j &&k**;
iii. k*= (i+j)Vok;
y. x=(i>j) ?++i:(bj) ?j:i
vii. klo = j = (i =4)Vo (=3)
ix. k+ = i ++ + ++j {'3

What will be the output of the following?
maln ()

{ printfO; }

main ()

{ const 1nt i : l- 0,

]

Review questions

What symbol terminates every oC' statement?

What delimiters are used to specify the beginning and end of a string in 'C'?

What is the newline character?

Will the following statements written in a program give any errors? If yes, what are they?If no,
specify the output.

i. printf ("Welcome" ,"to" i'C"):
ii. printf (''Welcorne" "to" "C");

iii. printf ("Welcome to C");

Explain the four basic data types in C.

Explain the types of constants in C.

State the different categories of operators. Explain the arithmetic operators.

What are variables? State the rules for namins a variable.

What is an escape sequence?

What are the two methods for declaring constants?

Explain the use of sizeof () and type cast operator.

Explain precedence and associativity of operators.

What are the different types of C statements?

What is the difference between a statement and a block?

Are negative numbers considered true or false by C?

What happens if a float constant is assigned to an integer variable?

What happens if a negative number is put into an unsigned variable?

Discuss logical operators of C,

Explain bitwise operators of C,

Discuss various forms of increment and decrement operators,

find x and the new values ofi,j and k for each ofthe

ii. x = ((i<j) | | j++l&& k++;

iv. x=0==2)?k:i
vi. x=i++?j--:k--,
viii. x- j >k ?k>i ? 12:k>i? 13: 14: 15

main ()

{ printf ("H\re\r11\o") i
main ()

{ printf ("He11o\n") ;
main O ;
]

B.

l.
2.

J.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

t6,
17.

18.

19,

20.

Wffi C Pragrarnming Variables, Data Types, Operctors and . ()"
utstf!ll

tT,Tl?fry1j:1:

, ,,,, Collbdtion of ffiuestio$rs ff$ked
pi"i *C ,*plain the output of followirrg progr**t
f,. .' ,;ola main'(,) , ,' '

'. '' t .;""a int a = 5;
tr "''::.. a++; .

!.r' j.n: i i'r'r.r1'rr o) :

2. ,f oto main { }

,: .' {

enum colout (gree;-,, i.:C ., 5, blue,
printf ("trt%d%cl?cteat),|dn, green, red,

a i:::i:t:::i

tl

1
I::: :::: , .).

inj- nrnin(i
I irrt ta: -1?r- *-::^ 0rlnt t
]
t

int main {)

t printf ittq3tr, printf (l'%

void main ()

{ int x, y, zi

4,,

5,

/- ti
/tt&dlt *r,\ uu t l:,1 |

TaLt

,).--.u z.

x * v = u $:

"**** I i ++y
Printf, ('ix ; :

.t^,, -^--r, '''juru
ril€+rr,rr ..

1i1:i:11:1',
) :: ;t'i'

*d,'

6;

inr t ; 0x1:2J4;
i:nt y : ox56?B;
xix&0x56i1;
y*y I 0x1234;
:{ o x ^ y;
prrntf ("l'x',[",'/.\ ;
r-'.:-i.,,tft'''. " t rr, 'y);

i

t)
qJfi$Inffififi

3.I INTRODUCTION
All computer prcgrams e"sentially read, process and display data. Unlike other high level

languages, C does not pro";Ce buili-in input/output statements. All input/output operations have to be
carried out by using functions. Many functions for the above purpose have been provided in the C
standard input output library (stdio.h). Included in this file are declarations for the VO functions and
definitions of constants (like EOF, NULL, etc.).

All VO in C is character-oriented. This includes writing and reading not only to and from the
console, but also to the disc files as well. Console VO operations in C are divided into two categories -
unformatted console VO functions and formatted VO functions. Formatted VO refers to the fact that
these functions may format the information as per user's choice. The standard library provides
functions of both categories, These functions are:
i. Unformatted console VO operations ii. Formatted console VO operations

3.2 UNFORMATTED CONSOLE I/O OPERATIONS
These are console Input / Output library functions which deal with one character at a time and

string functions for array of characters (String).

String lnput / Output Functions

,r. i li itiilililiiiilliil

i.,,j.ltt'r,:::j:il;tr:l;i

:',::lr,'.i,',l,.t.iil:iii,] BUilt I n | / O FUnCliOnS

ii. putchar()
iv. puts()

i. getchar()
iii. gets()

(- i,.'
,.1.;: l it fi

W C Programming Built itt l/O Functions ()"
utStotl

..F{nCti0a

isalnum(c) Relurns true if c is an alphanumeric character.

isalpha(c) Returns true if c is an alphabet.

isdigit(c) Returns true if c is a digit.

islower(c) Returns true if c is a lowercase alphabet.

isupper(c) Returns true if c is an uppercase character.

ispunct(c) Returns true if c is a punctuation mark.

isspace(c) Returns true if c is white space characters.

toupper(c) Convefts c to uppercase if it is a lowercase letter otherwise keeps c unchanged.

tolower(c) Returns c converted to lowercase it if is uppercase and unchanged oth€rwise.

3.2. I Character lnput and Output (getchar and putchar)
The function getchar reads and returns an input character frorn the standard input device.

Usage: variable-name : getchar O ;

The variable is of char or integer type. getchar() assigns the character value of the input character
to the variable.

E.rample: char c;
c : getchar O;

The function putchar writes a single character on the standard output device.

Usage: putchar (variable_name) i

OR

putchar (characrer);

Exampl.es

l. char c=getchar () ;
putchar (c) ;

2. char ans : 'y' ;
putchar (ans) i

3. putchar ('\ n') ;

Character Test and

The header file ctype.h
a character.

Example: char ch = 'at i
putchat (toupper (ch));

willdisplay A on sereen,

eharaeter test function$ are used with control struetures
program illustrates how they can be used.

like if, while, cte. Howevcr the following

/* posltlons the cursor to the beginning of lhe next
lrne. x /

Conversion Functions

contains declarations of several functions, which are used to test or convert

V#;n C Prograntni,lr . Built in |O Functions W
Program: /* Illustrates character input-output, lcst and conversion functions */

iiiii'.'tiii,flfiffllt

Output a
Enteracharacter: *

Not an alphabet

Output b

Enter a character :

It is an alphabet

lt is in lowercase

B

o

Note: getch() and getche() can also be used to read a single character as getchar(). They are defined
in <conio.h>. The difference between the two is that getche() accepts an input character and
echoes (i.e., displays) it on screen also whereas getch() does not echo it on screen. getch() can
be used to accept passwords.

3.2.2 String Input and Output [getsO & putsO]
Two functions gets() and puts() in the standard input / output library are used for string input and

output respectively.

gets() accepts a string from stdin (Standard input device). gets() continucs rcading the string,
character by character until the 'Enter' key is pressed. The newline is replaced by a Nl.JLt, character
(\0) at the end of the string. Spaces and tabs are allowed within the string.

Usage: gets (name-of-string) ;

-l

W C Programming Built in l/O Functions (),
utstnI

puts()
end.

outputs a string to the standard output device. It also appends a new-line character at the

Usage: puts (name_of_string) ;
OR

puts (string literal_) ;

Program: /* Illustrates string input-output */

',r,,t),,.1",',;::"rili.:i:i

Output
Type a string less than 80 characters: C is easy!

You typed: C is easy!

3.3 FORMATTED CONSOLE I/O OPERATIONS
These functions are used to input data from a standard input unit such as keyboard and get the

result on standard output unit such as monitor. As the name suggests, these functions follow a basic fix
format.

Formatted Console l/O Operations
i. printf()
ii. sprintf()
iii. scanf()

iv. sscanf()

3.3" I Formatted Output (printf)
The putchar() and puts() functions can be used only with character and string respectively.

A versatile output function is printf which can handle any built-in data types and you can specify
the format in which the data must be displayed, i.e., printf displays formatted output to the standard
output device. It returns the number of characters actually printed.

Syntax: int printf ("controI st.ring" , argL, arg2largn) i

/ .l:"
BSEt

C Progranning ituilt in l,'O

Control ,s'tring cottsis[s of

Ordinary characters that are printed oll sorce'lt as thoy apprtiif.

Format specifiers or conversion specificrs, which rJefine the output tbrmat o{'each argurncnt.

Escape sequences like \n, \b,\r, etc.

Format Specifier

There rnust be exacfly the same number of arguntenis as lhere are f"ormat spec:ifir:r in the same

order.

Each format specifier begins with a Vo and ends with a conversion character.

Between the Vo nd the characfer, there may opiiornlly be,

a. A minus sign tor left justification of the argument.

b. A number that specifies minimum field wicith. lf * is given. it inrplies to fakc tiext
argument as field rvidth.

c. A period, which separiltes tieid width liorn lhe pi:ecision"

d. A numbcr, specifS'ing precis!on, i.e., the nurnb{:r'llchararrlcrs to [r* plinted {-rout a strlng.

or the nurlber of tligiis altsr Lhe tlcciri-i.rl ltoiiii ui'a i'it,r;il vtlLr". or tit* mrriitrtittn ttt;Liberrs

of digits fbr an integel'. i' nleans lake uexl ilrliurit{jnt :ii;tr.

e. h if integer is fo be printed as short, I fbr lcng and l, lor loirg iLtublc.

printf converslon ehanacter anei nreaning

Character Argument lype Printeci.A$

"hc int or char Single chararler

%i,%d int $igned decimai integer
t/"x,"kX int Unsigned hexadecimal number using a......f or 4....F.
YoA int Unsianed octal number

%t float, double Floating point nurnbr:rs 6 decimal places by default
o/oe,okE float, double Floating point nLrmhers in exponentia.i format

%o.%G float, double Uses 7oe or % f whichei,,;1 i3 5i13;'{e-;r

'kp void " Pointer
o/ o/;o la no argurTlent Prints a %
o/ol) unsianed int LJnsigned dccimal nunrher
oks ?22?222? Prints a string

printf conver$ion character for quinlifieC da{a lyg:es

Form*t specifier Afgusrxent typ0 q4aqi
%td,li Lonq Decimai lcrrg integer

%Lu Unsigned long Unsigned long integer

%hd, hi Short Decimal shoit integer

"knu Unsigned short Dccimal unsigneC short

%le,lf, lg Dor"rble ned ckluble

%le,lf,lq Lonq double Sicned lonrr double
ohlo L0l Octal long int*ger
oklx Long Llexade;irnrl kug

W , ,.r"ry:n o Buitt in t/o Functions 0:

Examples

l.
2.

3.

4.

5.

6.

1

^ri6f
FlttTl^:- i^ r eir.in^tl\.Prf rrLr \ !ItI5 aD a ou!rrrY),

nrjnf F/[il\.
IrlfrrL! \ | |

nr i n1- € / tr \ h n \ .
\ \rr / /

printf ("The val-ue of x is td"
printf("radius ?f, ar€d : ?fw
nrinf f l'trHi *ci *c 9err 2 ttll, -t v ,
outputs Hi 2 U Welcome I

The foll-owing statements illustrate the output of number 1234 in
di-fferent formats.
printf(u%du , L234);
printf (ut2du , L234l' ;
printf (tr?6dn , L234) ;
printf ("%-5du , I234l' ;
printf("?06du , L234);

Disptaying a float value in various
printf (rr%f rr , !2.3456) ;

printf ("28.2f" , !2.3456) ;

printf ("?1-0.2e", 12.3456) ;

formats

printf ("4-L0.2e" , L2.3456) i

print.f ("%E'r , 72.3456) ;

9. Displaying a string "Learn, Write" with different formats.
8s

?l_0s

E .10s.
?15 s

% - 15s

ts15.10s
E -15.10s
t*,*sr15,2

i0. print.f ("%dil, printf ("He11on)); willproducethe
11. What will be the output? Give explanation.

void main O,
i printf (5 + " Fascimile") ;
]

Atts

Output is mile.

First 5 characters of the string "Fascimile" are truncated.

followingoutput : Hello5

, x li
r:d :rar\.sr vq / ,

lh7a] anma | tr t .. lf

8.

1 a a 3 5 A 6 0 0

1 2 a J 5

1 a aa f 0 1

1 a 2 + 0 1

1 a) 3 4 5 o E + 0 1

L r n W r t t e

L e r n W T I t
L a r n W t 1

L a r n W r 1 t e

L r n W r]- t
L a t n W t I

L E t n W t t

L g

u(lin c programming c Buirt in t/o Functions W
3.3.2 Formatted Input (SCANF)

The general purpose input function is scanf. It reads characters from the standard input, interprets
them according to the format specifics and stores them in the corresponding arguments. It returns a

number equal to the number of fields that were successfully assigned values.

Syntax: int scanf ("control string" , &var1 , &var2,evarn);

The argument, each of which is an address, specifies the location where the corresponding
converted input should be stored.

The control string mny contain

i. White space characters.

ii. Conversion specifications which consists of a Vo sign, an optional suppression chatacter *, an

optional number specifying a maximum field width, an optional h (for short int), I (for long int
or double), L (for Long double) and a conversion character.

iii. A non-white character which causes scanf to discard the matching character.

scanf Conversion Characters

0hamcter ,,,Daa'ieadlas
T"d Decimal integer
o/oC Single character

"/oi Integer (may be in octal with leading 0 or hexadecimal with leading Ox or ox)

"/oO Octal integer

"hu Unsigned decimal integer
o/"s Character string
t/.e,f ,g Floating point number
o/oX Hexadecimal number

%1....1

Search sets, which are a sequence of characters. Scanf stops reading a string as
soon as a character not in the set is encountered. lf the first character in the set is
a ^, scanf reads all characters till the first matching character from the set is read
from the input. Search sets are case sensitive.

Examples

1.

2.

3.

4.

6.

scanf ("8fu, &radius) ;
scanf (il%d ?fu, &roll_num, &marks) ;
cnrnf /llqdgcll r-a^d fn:ma\.

\ vvuv lrrqrrrv/ f

(an & is not given with fname since fname will be defined as a string and the name of the string
denotes its address)

scanf (*tuu, &n) i
The value of n can be given upto 65535.
scanf (r't Iabcdef] 'r, address) ;
This will read the input characters as long as the input characters are in the search set, abcdef.

scanf ("t Iabc]t', address);
If the input given is Mumbai, only Mum will be stored in address since b is in the search set.

C Programming Built in I/O Functions ()"
||tttnx

scanf ('%d8 [/-] Zd%{/-l ?d", &date, &separator, &month, &separator,
&year);

If the date is entered as :3I-12/2000 , the values assigned are:

date 31

separator

monrh 12

separator /

scanf("%d * l/-l *d % * f,/-) %d", &date, &month, &year)

Here, the suppression character * is used which will skip a / or - (i.e., not assign them to any
argument).

printf(u?du, scanf("%d%s", &a., str));
If the values given are 10 and Hello, the output is 2.

3.3.3 sprintf and sscanf

. sprintf is the same as printf except that the output is written into a string rather than displayed
on the output device. The return value is equal to the number of characters actually placed into
the array.

The string is terminated with '\0' and it must be long enough to hold the result.

PrOtOtype: int sprintf(char * buf, char * format, arg_list)

Example: char s t 80l ;
sprintf (str, "8s td Ef", "HeILo" , 2, 5,0) ;

This will result in the data. Hello 2 5.0 to be pur inro the srring str.

. sscanf is identical to scanf except that data is read from the string pointed to by buf rather than

stdin. The return value is equal to the number of fields that were actually assigned values.

Prototype: int sscanf (char *buf, char *format, arg_Iist)
Example: char s l20l ;

int nl , n2;

sscanf (I'hello L0 20" , 'rts %d &d"., s, &n1, S,nz) ,

This assigns hello to string s and 10 and20 to n1 and n2 respectively.

():, C Programming . Buittin I/O Functions Wutstoil w

SOLVED PROGRAMS

1. Write a program to accept temperature in oC and convert it to oFahrenheit using formula

temP- in' oF
= ?

* t"-P-in' oC +32.

/*This O.o*.urri.onverts temperature in degree Centigrade to Fahrenheit*/

Output
Enter the temperature in centigrade: 37

Temperature in centigrade = 37

Temperature in Fahrenheit = 98.599998

Write a program to calculate the distance between two points, using formula.

d=

Output
Enter the coordinates of the first point:10 0

Enter the coordinates of the second point: 0 10

The distance is 14.142136

W C Programming Built in I/O Functions ()"
iltGtnr

3. Program to convert time in seconds to equivalent hours, minutes, and seconds.

Output a

Enter the number of seconds : 60
60 seconds are equivaient to : 0 hrs 1 mins 0 seconds

Write a program to accept integer numbers till user enters '0'
display how many non-zero integers are entered.

and

Output b

ur?rf, C Programming c Buitt in t/O Functions ffi

ExERctsEs
A. Select appropriate answer

main ()

{ int i;
printf ("%d", i) ;

)

a. error b. garbage

main ()

{ inti=10;
float) : 20;
nrint-Flf9-{rr cizaaf I iri\\.y!rrr!! \ vv , \L'Jt t,

)

a.2
main ()

{ j-nt i,
i:0x10+
nr i nf f / il 9.] n

]

a.0
main ()

Hello d.

d. 32767

d. garbage

d, eompiler dependent

111.

30d.b.

34

010+10;
it.

b. efTof

i char ch : IABC';

printf (u%cu, ch) ;

]

a. error b. ABC

maln ()

{ prlntf ("\nH\ne\n11\ro") ;

i

HH
ea.ib.e
ool

maln ()

{ lnt1'10, ai
a-1++/++Ii
prlntf (r'td . . tdrr, a, 1) ,

chd.Ac.

o

vl.

a. 1,,,,12 b. 10....10 elTot

ffi C Programming Built in l/O Functions ()"
ut$tni

vii. maln o

a. 10....10 b.

viii. enum cof ors { BLACK,

main ()

{ printf('r%d.
i

a. erTor

1X.

{ rntl:10,)=20;
i ^_-i . ;^_.i. .i^_+.

t) -L, L -Jt
printf("td, , Zdr, i,));

]

10....20

BLUE, GREEN};

.%d..U,dn, BLUE,

c. 20....1o d. 20....20

B.

GREEN, BLACK);

b. Blue, Green Black
"The stock's value is decreased by 70Vo"

Which of the following exactly reproduces the above message?

a. printf (rrThe stock's val-ue decreased by 10 %") ;
b. printf(u\uThe stockVs value decreased by %d \ % \.\"\n", IO);
c. printf ('r\'tfhs stockVs value decreased by % d ?%.\ u\nu , 10);
d. None of the above.

Predict the outputs

1ll.

main ()

{ int a = 300 * 300, b;
b : a/2;
printf ("td %d", a, b) ;)

main ()

{ char ch : 'A';
i nf :

-
aLtrL L - L t

float f: ++ch+ii)
nri ni f (n9^f *d9^tn F nh nh \ .

vrr/ vr!t,

main ()

{ intx=12,yi
Y = x--;
Y - =--x;
printf ("tdtd", x, y) ;

]

maln ()

{inta:5,f=10;
printf("td\n', a++ + b++ + ++a
a : 5; b = 10;
printf ("t d \n", ++a * ++b);
a = 5 ; b = 10 i
printf ("trl\1r", a: ++a * ++ b) ;

)

tv.

+ ++b) ;

u,(#i C Programming . Buittin l/o Functions ffi
V. miriu o

{ int Float : 2, pi = 3.I4;
printf (n%fefrr, Float, pi);

]

vl. mairr o
{ int 1,

i : 32000 + 1536 + 10 * 0;
printf ("%du , i) ;

]

vii. main ()

{ int x,y,zi
x = Y = z -- -!i
z : ++x && ++y I | ++zi
printf (r'x : %d, y -- %d, z -- %d" , x,y, z) i

)

viii. main o
r ^L- r-r ^L.1 UrIO! ! - L t WlLf

c: c +'ar-rAr;
ch: c -rat+rArl
printf (u%c", ch) ;

)

ix. main o
{ inti=10,5;

printf("td",i)i
]

x. main ()
{

^^n<f
inf- -^.- xi

x : 130;
printf("td",x)1

]

Programming exerciseC.

i. Find the roots of a quadratic equation using the formula,

that b2 > 4ac.

Accept the basic salary of an employee and calculate and display the following:

Dearness Allowance (DA) = 1507o of basic

Income Tax (IT) = 30Vo of basic

Provident Fund (PF) = 8.33Vo of basic

Net Salary = Basic + DA - (fT + PF)

Accept two numbers and interchange their values.

-b t^/b{4ac
2a

Accept values such

11.

lu.

ffi C Programming Built in l/O Functions (2,
ul*tni

iv. Given the three sides of a triangle, calculate its area using the formula
a, b and c are the three sides and s is the perimeter.

The frequency of an electrical circuit is

F- Write a program that accepts Inductance (L), Capacitance (C) and

Resistance (R) of the circuit and calculate its frequency.

Write a program to accept a character from the keyboard and check if it is an alphabet, digit or
special symbol.

ff it is an alphabet, check if it is uppercase or lowercase. If uppercase, convert it to lowercase &
vice-versa.

Review questions

Explain the functions getchar and putchar with examples.

Explain the format specifiers used with the printf functions.

Explain search sets in the scanf function with examples.

Is there a difference between:
print.f ("He1l-o"); printf ('rWorld"); and
puts ("Hel-1o") ; puts ("World") ;
What is the difference between getch() and getche() ?

What format specifiers are used with scanf?

vl.

D.

vi.

s (s-a) (s-b) (s-c) where

'.:::::1. j ll r ;i lliri::.
rl I.ii ll:1::;:ii..:rlr'. ':i.1,i..':i::::,,,,,: .'.11,i;.;:,.:. , ...r. .';';:::i...r

'
i

(_/,u

ulst0ll

Control Sfqtemenls

4.1 INTRODUCTION
In the previous chapters, u'e have studied some basic input output functions. We have also seen the

different types of C stateul;nis. iu this chapter, we shall be studying the program control statements,

which specify the order in which instructions are executed.

Sometimes, it is necessary to alter the sequence of execution of statements based on certain

conditions or we may require some statements to be executed repeatedly until some condition is met.

This involves decision-making and looping. ln addition we shall also be studying the jump statements,

which allow breaking out of decision and loop control statements.

4.2 SELECTION / DECISION MAKING STATEMENTS

Many programs require testing of some conditions at some point in the program and selecting one

of the alternative paths depending upon the result of the condition.

C provides three mechanisms to check for conditions and execute or skip certain parts of thc

program. The three decision-making statements are:

i. if statement

ii. if-else statement

iii. switch statement

4t1

,,ffi
C Programming Control Statements (k

lttatnl.

4.2.1 if Statement
This is the simplest form of decision-making statement in C. It allows decisions to be made by

evaluating an expression. Depending upon the result (True or False), the program execution proceeds
in one direction or another. Basically it is a two-way decision statement.

The simplest form is:

if (expression)
statement;

Note: Here, statement could be either a single statement or a block of statements (enclosed in braces)
as shown below. Henceforth, we shall use Statement to imply both

i.f (expression)
qf rl- omanl-.

for single statement.

if (expresslon)
{.....

sta1:,ements;

;

litl rltlre than one statement.

'l'hc keyword if must be lbllowed by a set of parenthesis containing a single expression ro be
terstccl. The statement is executed only if the expression is true (i.e., non-zero). If the condition
evaluates to false, the statement is skipped.

Figure 4.1

E"rurn1tle

I if (n<O)

pr, jntf ("The trutrrl',.r irr rrr.rl,ttiverr);

$r?;r C Programming . Contolstatements ffi
2. i-f(age<30 && salary>10000)

printf (r'You are young and rich ! ! ") ;

3. if((n%3 :: o) && (n%5 :: o))

printf("The number 1s divisible by 3 and 5") i

4. if(basic_sal > 10000)

t

it : 30.0 * basic-sal / L00;
da = 200.0 * basic- aI / L00;
hra = 800.0;

i

4.2.7 if else Statement

The 'if' statement will execute the statement if the expression is true otherwise it will be skipped.

However, in many cases we require an altemate statement to be executed if the expression evaluates to

false. This is possible using an ifelse statement. The general form is,

if (expression)
statementl;

eL se

statement2 i

Here, the expression is evaluated. If it is true, statilmentL is executed and if it is false, statement2

is executed. Thus, either'statementl or statement2 will be executed; never both.

Flgure 4.2

if else statement

ffi C Programming Control Statements (?,
uttrnr

Examples

f. if (a>b)

printf ("a is largerrr) ;
el-se

printf ("b is larger ") ;

2. if(year?4 :: 0 && yeartlOo l: 0 I I year%400 :: 0)

printf("?d is a leap year", year);
^1-^ea Dg

prlntf (rr8d is not a leap year'r, year);

This can also be written using the conditional operator?

(year84 :: 0 ee year8100 !: 0 | | year?400 := 0)?
printf ("1eap") : printf ("Not Leap") ;

at-{ i f lnrrmhar*2 == 0)

printf ("The number is even") ;
e1 se

nrinl-f /tlTha nrrmlror ic arlrltr\.
\ 4rrv f s vvs /,

(basic_sal < 10000)4. if
{

i+ - tn *

da : 150 *
hra : 500;

]
^1^^

{it : ?n *
da:200*
hra = 800;

)

l-rr<in cr'l / 1oA.
| 1vv,

basi-c_saL / 100;

I tvv t

h^crn cat / ttttt.
I zvv,

Nested if ...else Statement

As seen earlier, the if clause and the else part may contain a compound statement.

Moteover, either or both may contain another if or ifelse statement. This is called as nesting of
ifelse statements.

This provides a programmer with a lot of flexibility in programming. Nesting could take one of
several forms as illustrated below,

i. if (expresslonl)

st.atement 1

el se
if (expression2)

sLatement 2

ur?ri, C Programming t Controlstatements W
ii. if (expressi-on1)

if (expression2)

statementl
el se

if (expression3)

r staLement2

iii. if (expressionl)

if (expression2)
statementl

else
statement2

olqa

statement3

iv. if (expressionl-)

statement I
else

if (expression2)

statement2
ol qo

statement3

v. if (expressionl-)

if (expression2)

statement 1

else
statement2

o'l qa

if (expression3)

^-^t^-^-t?

el-se
^+ -r ^*^Ff

1

Examples

f. if (a>b)

if (a>c)
nrinl-f/ll:
ts!+.^u! \ q

else
nrin{-f/rrn
t/!lrre! \ v

else
if (b>c)

nrinff/lrh
r!+rre! \ v

else
nrinff/lla
F!4..e- \ v

i-s }argestr')

i e I:rccqi- lr'l

i e I rraacl- lr \t

'i= l:raacl- rr\
I

ffi c programming contror statements ()'

2, if ((ch >: 'a' && ch <: ,2,) ll (ch > 'A, && ch <='Z'))
printf("Ec is an alphabet", ch);

el-se
if (ch >= I 0 ? && ch< ='9')

printf (ttEc is a digi_t", ch);
ef se

printf(rr?c is a special symboI", ch)i
Note: It is a good idea to enclose each of the 'if and 'else' blocks in braces if the logic is complex.

Example

A recruitment agency recruits candidates satisfying the following conditions:

i. If the candidate is male, between 2s and,30 years of age, height above 160 cm.
ii. If the candidate is female, between 20 and 25 years of age with height above 155 cm.

The if-else construct for the above can be written as follows:

Note: else ahvays gets associated with the nearest if statement. Hence { } should be used to associate
the else with rhe conect if.

The else - if tadder

If there is an if else statement nested in each else of an if- else construct, it is called an else - if
ladder as depicted below.

if (exprL)
qtFfamaht- l '

el- se
if (expr2)

statement2;
else

if (expr3)

statement3;
el se

statement4;

ur?ri, C Programming . Controlstatements W
This can also be written as

if (exprl)

statement 1 i
^t -^ I F /^,,*-t\Er-s r! \s^IJ!.,/

statement2;
alco iflavnr?\:5 \v.rr-vl

statement3;
^t ^^

statement.4;

The conditions (expressions) are evaluated from the top downward. As soon as a true expression is

found the statement associated with it is executed and the rest of the ladder is bypassed.

If none of the expressions are true, the final else is executed. The last else often acts as a default

condition, i.e., if all other tests fail, the last else statement is executed.

If it is not present, no action takes place if all other conditions are false.

Examples

l. To check whether a character entered from the keyboard is an alphnbet, digit, a special

symbol or punctuation mark.

$e t *.erqmur,t ct1 1r,1*,,,

2. To find class of a student from the marks.

ffi c Programming o controt statements (1::

4.2.3 The switch Statement
Whenever one of many altematives is to be selected, nested if - else statements can be used.

However, the structure becomes very complicated and the code becomes difficult to read and trace.

For these reasons C has a builrin multiple-branch decision statement called switch. This statement
tests whether an expression matches one of a number of constant inteqer values and branches
accordingly.

The format is
switch (expression)
{

casc aonsf -cxnrl . <l- rl-amanf .suquvrLrsrrL,
eFse ..)nsf-avnr? . ei^l-am6nl-.vugUvtrlgrrL,

case const-expr3 : statement;

default : statement;
)

As mentioned before statement implies a single statement or a compound statement.
I The expression enclosed within parenthesis (integer expression) is successively compared

against the constant expression (or values) in each case. They are called case labels and must
end with a colon (:),

o The statement in each case may contain zero or more statements. If there are multiple
statements for a case they need not be enclosed in braces.

. All case expressions must be different.
r The case labeled default is executed if none of the other cases match. The default case is

optional and if not included, no action takes place at all if none other match.
o Cases and the default case can occur in any order.
o More than one case value may be associated with a pafiicular statement.

Exarnple: /* Use of switch statement */

ruffi

j l: :, i.' ;i;i j trg
t*;*,ffi ii-,'t*j**il*ffi oi +uuffi

i,iffi ffi tt= +rlr*ttllffi i+i' 1I

Q:'- C Programrriln(J " Controt Statements Wut8toil_____,ffi
Output

Enter a number between

You entered 2

You entered 3

Out of range

I and 3:2

However, this is not the required output. The output is like this because when a match occurs, not
only the stafement associated with the'matching case is executed but those of all the remaining cases

are also executed. Using a break statement can solve this problem.

Use of break Statement

The break statement is used to exit a control structure. As soon as a break statement is encountered,
program control is transferred to the first statement outside the structure to which the break belongs.

In the above program, if a break starcmeut is included in every case, as soon as a match is found,
the statement(s) of the matching case will be executed and the break statement will take control
outside the switch statement as illustrated below.

The default case need not have a break statement since it will be the last case executed if no others

match.

Example: Illustratiorr of slvits:lr using trreah,

#include<stdio. h> .

iintt;r*ter;,, ,, "
,.xlr,intf t'f Enter anv, numbef: between
,..;i,..s.C"n'g,i.ll.8dl'..*nuilber) ;' " r,

:,:.bwicet (numbbf i ' "' i,, r. r r.r,, .

: r:.:t::r: :.:::r:- :

: r fl:ll : " rii i. :,1 r,:lll
:,,..::, r:,: ::;rr,.r i.::.

:ir: t::i:i:::1':!; :.ii t.tt i | | ti | | | |

j! 1::i:1|t:,. : . a, :::

I

r ;'*rr.:..crIt!,i

entered 1 \..;.rf ,1.:i:+: t!:rt tt ttJ:t:t

an|.''4iAe]:Ytlt!ittY:t!!Y:Y
t\ ;li I.i ie,\t! t,

,,;,da-',f au.Lt, i

Output a
Enter any number between \ and3:2

You entered 2

Enter any number between 1 and 3:10

Out of range.

W c Programming o contro! statements o"Fffi , Ut8toi

Note: To associate more than one case value with a particular statement, you have to simply list the

multiple case values before the common statement (s) that are to be executed. This is called-
falling through cases.

Examples

i. switch (operator)

t

";;"
'!*'| :

case 'X' : result : valuel * val_ue2i
printf (u%fu, result);
break;

...i

ii. switch (c)

{ case t0r: case ?L? use: case,2,: caset3t3
case '4' : case t5t : case 16, : case t7t i

case '8' : case '9': digit.++i breaki
case I I : case \n : case '\t' : white_space++; break;)

Nested'switch' Statement

It is possible to have a switch statement as a part of a statement in another switch statement. Even

if the case constants of the inner and outer switch contain common values there is no conflict.

Example

switch (x)

{ case 0 : printf("Invalid value");
break;

case 1: swj-tch (y)

{ case O : printf (rtvalues are 1and 0");
break;

case 1 : printf("values are 1 and 1");
break;)

case 3

break;

:

:I

urilf, C Prograntming . Controlstatements W
Comparing if-else and switch Statements

Although both these statements cirn be used tilr multi-way decision-making, there are some

differences between the two, which are crucial fbr the selection of one of these in a program.

lf-else structure Switch statement

t.

The if-else structure allows only two-way branching
from a single expression.

True-/
statementl

-/
if (expressioq)<

\
Falsd-<\ Statement2

Switch allows multi-way branching from a single
expression.

switch (expr)

Case valuel
Case value2

il.
The nested if-else structure is non-elegant and
complicated.

Switch statement is very elegant and easier to
write.

ilt.
lf multiple alternatives exist, the nesting can go to
many levels and it becomes difficult to match the else
part to its corresponding if.

No such problem occurs using a switch
statement.

lv, Debugging becomes difficult. Tracing of errors and debugging is easy.

The test expression can be a constant expression or
an expression involving relational or logical operators.
Float and double are also allowed,

Only constant integer expressions and values
are allowed.

vt.
Multiple statements within if or else have to be
enclosed in braces.

The statements belonging to a case need not be
enclosed in braces.

4.2.4 Conditional Operators

The ternary operator?: can also be used for decision-making. We have already seen how this

operator works. The general form is

exprl? expr2: expr3;

Ifexprl is true, the entire expression takes the value ofexpr2 else it takes the value ofexpr3.

Examples

i. char ch;

.6: getcharO;
x: (ch >:65 && ch <= 90)? 1: 0;
x? puts ("Uppercase alphabet ") :puts ("Other character'") ;

This piece ofcode checks ifcharacter ch is an uppercase alphabet.

ii. The following statement assigns the largest of three numbers (a,b,c) to x.

x: (a > b) ? (a > c)? a : c : (b > c) ? b : c;

4.3 TTERATIVE STATEMENTS (LOOP CONTROL
STRUCTURE)

A segment of program code that is executed repeatedly is called a loop. The repetition is done until
some condition for termination of the loop is satisfied.

A loop structure essentially contains

i. a test condition

ii. loop statement(s)

The test condition determines the number of times the loop body is executed. It involves evaluating
a loop control variable(s), whose value has to change within the loop body so that the loop execution
can tefininate.

The iteration procedure takes place infour steps:

a. Initializing the loop control uuiiable.

b. Execution of loop statements.

c. Changing the value of the control variable.

d. Testing the condition,

Depending upon when the loop condition is tested, Ioops can be of nuo rypes:

1. Top-tested loop (entry controlled loop)
2. Bottom tested loop (exit controlled loop)

In an entry-controlled loop, the condition is evaluated before the loop body is executed. In the
bottom tested or exit controlled loop, the condition is iested after the loop body is executed.

Top-Tested or Entry
controlled loop

Bottom Tested or Exit
controlled loop

Flgure 4.3

ur(i, C Programming . Controlstatements ffi
The C language provides three loop structures for use in programs.

i. while statement

ii. do...while statement

iii. for statement

4.3. r The while Statement
The while loop is the simplest loop structure. It is often used when the number of times the loop is

to be executed is not known in advance but depends on the test condition.

It is an entry-controlled loop, i.e., the condition is tested before the loop body is executed.

The syntax of the loop is:

while (expression)

statement;

The expression is the test condition and can be any valid C expression.

The statement can be a single or compound statement.

How it Works?

o The expression is evaluated and the statement (loop body) is executed as long as the expression

is TRUE (non-zero).

o As soon as the expression evaluates to false, the execution of the loop body is stopped and

control is transferred to the first statement outside the loop body.

o Since it is an entry-controlled loop, if the expression evaluates to false the first time itself, the

loop body will not be executed even once.

Examples

1. Program displaying all even numbers below 50.

/* Demonstration of a simple while loop */

W c programming . controtsraremenrs {)"

Points to Remember

' The loop control variable(s) must be initialized (i.e., given sorne value before the condition is
tested).

' The loop body must contain a statement to alter the value of the control variable.

2. calculate the sum of numbers from l to n (user specified), i.e., l+2+3+..........+n
* Illustrates while loop */

3. To accept characters from the keyboard till the user enters * and count the total number
of alphabets entered.

Here, ch - getchar() is enclosed in () because != has higher precedence over =. The character has
to be read first and then compared. Hence the ().

*j

u,Ei", , "ronrmrn
. "onrro,rrrr"r"nr" ffi

4. To reverse a number

/* Program to reverse a number, i.e., if user enters 324,the output should be 423 *l

: :ll: : :t: l;rr: ij: jj j ! :j :1rl jljlljj j! jr:l
:

:

:
r:

: i : : : : : : : : : : : i : : : i : : , i , : i 1 : : l : t ; r i l

1,11iijjrti:rtl

Enter the number to be reversed 5678

The reversed number is 8765.

Nested'while' statement

Just like the 'if ' statement, while statements can also be nested. Nesting of loops means a loop that
is contained within another loop.
r^rl-ri I a /avnrl \

\ v::ts! f /

t
urhi 1a /avnr? \

\ vrrrr c /

1

I nnn hnrlrr nf r^rh i I o / ovnr? \ .
\ vrryr 4 / ,

]

)

Nesting can be done upto any levels. However the inner loop has to be completely enclosed in the
outer loop. No overlapping of loops is allowed.

Nesting of loops is required in many programming exercise like multidimensional affays etc.

Examples

1. To display the following structure
I
t2
r23
1234
i.e., l to n rows and numbers from 1to n in the nt row.

:::iij:,:):,, :::;i, iii:,i.:,1,::!
tii;tlLiin

tilixtxfi

W C Programming Control SlatemenLs (2"
ut8t0d

/* program to display triangle of numtrers */

f,i$'H'f6 i#i' jrF#fi,
liiir

nr$r ali,l,lii,li f

il,'i

Irriil,;titt'.rii|i'',it;1;1..f.+,1,f*+rir*bt'.. ;i .,n,;mb*t,t,,ii1,,,r,,i,,
i;'F:fint,f;;{;llHow,, maipll lj.ne,,s:: rl) ;,. r'' i

.,:,..s.e*nf .t il;$6il r,6n1 ; ' .
,nf 1t:ii',Sd'i,

' ,.:|

:ilt';i:i

.:.::::::::::::::::::: ::::::!:::::. ::!!:!.::...:. :

, -, .1'" ;.. /t',,, ilnitta:llze Iihe; xun5qr *7

li.,,..whxt,6 tl-fhejntmber{=n) /* 'ltne humoer goes from
:i: : 'f i: :: ::

r* .a; cn,l::rr !.o-i,:i,,.{ humber *, 1 .i ., **-r --, -,.2-ris f rcfir I * /
L La fi)t/

iiti .,iliililiii.*'H+,i'a:.*,h"*n."1= t i n e,. n,umb*i 1:,',, .
iirii;jF ir jr';ji:r: I 1r' i r-jrri::rJ.!1::r1+:: .'j. '

i.i;ij;fitf,
.t.t;,

petittlr,,t,r,4 a f! tr, n umbe r l, ;'.'' ."

.t''..i,1i..1'r' +';,o!!;,f'; r,7.;,;.;r i',,*;i*;:,1 * /
'.::,:iitii

:,., :,'
:. t .l:l;n e*nurnb,g r' i + :-: /x fravf liffawll

t.l

:ii,i:iii:;iiii

In the above program, the outer while loop is for the lines from 1 to n. For each line, we have to
print numbers from 1 to the line numbers. This is clone by the inner loop, i.e., for every value of line-
numbers, number takes values from I to line_number.

2, Write a program which accept a string and count number of
lines, characterso spaces, numbers and special characters in a
string.

f#fl.:'.+..j'.'''.-.:'*='i
.::r,::rl:il:Iuil#.r,*'x1,,i-,l

il;;';til'
.;i

('),,
qilst&fr{

C Programming ' Control Statements W

;lrl]1,;j'jJJt',...-:]l'l i*.*;'ir

- :
:

:ll-:r:.:,'.ll :

,:lit,,'r,, 1 lri:

4.3.2
i :ri I

ri'fil
,:1. lrrl i:' 1 , ,i: : r: r :; : i r;, rl,t ..:.liiitlt:i':,iia!.iiitaiit :i,;titiliilla:.1:i::;,ai,:ait,ttttll

The do-while Loop

The second iteration statement provided by C is the do-while statement.

The while loop seen earlier is top-tested, i.e., it evaluates the condition before executing any of the

statements in its body. The do-while loop, on the other hand, is a bottom-tested or exit controlled loop,

i,e., it evaluates the condition after the execution of statements in its construct. This means that the

statement v;ithin the loop are executed at-least once.

The syntax is

do

i sLatementi
whil-e (expression) i

The statemenf (sincrle or oomnound) is executed as long as the expression is true.

Noter The : following the while.

The sequence of events is:

i. The statement(s) in statement are executed.

ii. Expression is evaluated. If it is true, execution returns to step 1. If it is false, execution of the

loop terminates.

Example

do

i prlntf i" \n 1 - Adtl a ::eccrC.") ;

prrntf ("\n 2 - Delete a reco::d")i
prinrf (t"rn 3 - View Records't);
printf { " \n -1 - Quit r') ;

printf ("\n Enter your cho--ce:")I
scanf f riedil e choice) ;

swit.c]"r (choice)

{

r:ase 1 : add{);
br:eak;

C Frogramming o Control Staternents

^--^ ?

case 4

]

]whl1e (choice l:4) ;

-l
1ti rii:tcve progranr co{.le rihows a do while loop. rvhich displays a menu and accepts a choice.

in this case. rve wilnt the nlenu to be dispiayed anci choice to be accepted at least once ancl so a
do_rvirili: loop is pr"efen"ed.

,|J"3.3 The for Loop
'fire for loop is very fiexible, porverlul and most commonly used loop in C. It is useful when the

number of repetitious is known in advance.

This is a top-tested loop similar to the rvhile loop but the advantage is that it combines the
ir-iitialization test condition ancl lorip variable alteration statement in a single statement. The syntax is:
f or rexp: 1; ex';:-2; exp:3)

stateneut

rvhere, exprl is the inirialization expression

cxpr2 is the test condition

expr3 is the update expression

These three expressions have to be separated by semicolon (;).

T'he above loop is equivalent to

while (expr2)

'{ st ai:,:lrr,'nr,;
.:.-,r.' lr ''. --t'. t

break ;

: viewO;
break;

: pr:nLf ("B\rer");

'. r;i! .1 1:r.1 , i,.",ll*fri

I i \'rlii,rrl:'itiliii',, 1111,,.'. i.r'. iil llrr'irrri.:tilnirrq.'l'his expt'essiolt pgrll)y1ns initialization ol'thc
;i ii,,j \ r:1.rJ,lr' l t,iiij!iriir' iliili:tiiti'rilir:.r c:rtl iilso ht: r.lone its scl'n lflter).

l' l I ,"::lt,,lr ulrr,iir:;t'r':iirr,rlr'tilrr:lirtccxi:cttliortril'st;tlctttettlsinllrr.loop.'l'hg
'r, i,.' ,ri ,i r,rrir rl lirt'i'':,1 {'\l)r'r:s:iii;n is true. lf it is false, the loop excrctrliol

.,;r:.. \l.r;; ,; ,il iir(rti.t ilti i'tr rrttlt'lr single l|st c\plcSSi()t'l,

r.i tl!rr ilir\iirrc {'.\i'}lessi()tl, w'hiclr trltcrs the value o1'the loop contfol variable.ri\1,; i

ur6#"n C Programming . Contralstatements ffi

for (Expr 1 : Expr2 ; Exry3)

\,/
Execution of for

Example

for (i:1,; i<:100; i++;
print-f ("*d \n" , i) ;

i= 1 -+initialization

i <= 100 -+ test expression

i++ -+ update expression

Different Fgrms of the 'for' Loop

i. f or (i: 0; i < 25; i++;

starement t -t single statement

ii. for (i = O; i < 25; i++;

' :::"*.'''
ci ifamant .U uq UvrL'Ulr U,

)

for(1=0; i<25;1++)

or
for(1:0;i<25;i++1;
for(i=O,j:0;i<25;

statement

--+ .^mnnttnd sr at ement

vi

!v! \,

for (; i
< 25, i++)

< ?.5;)

-> loop with no body.

i-++, j++)

+ Multlple initialization and multiple
rrnr'l:l-6c <anar^t_arl hrr

^Amma

-r Initialization expression not 'Jse.l .

-+ Initial"ization and update exi-,.r.:rsi,,,l-)
not used

--l Al I three nr-'t used .for(;;)
pr:-ntf ("Forever \n");

Examples

l. for(i*1, j-50 ;i<=2Ol I j>=10;i++ J**)
p::inff ("\n %d ?cl*i, j)i

,ti{{fi'#ffi,i,f,f,
_

C Prograrnming Control Statements

2, ror (rcmp:0,'tempr'= 5tr; Lenp=temp+5)

1

fahr = (9*temp) /5 + 32);
printf ("\n centigrade = ?f FahrenLreit : %f", temp, fahr) ;

)

3. ,/ * Accepts va]ues f rom user til1 99 i-s entered *,/

inl num : 0;
fc:r(;r-rurnl*-99i)

scanf (rr?dn, &num) ;

4. for (i : 0; ++1<10;)

printf("%d \n",i)
E.vample

1. Calculation of factorial of a number. W€ know that n! = n x (n-l) x (n-2) ...'..x1. Thus we
have to repeatedly decrement n by l till 1 and multiply each yalue to the preyious product.

Note: We can also incrernent from 1 to n and perform nultiplication.

/* Calculation of factorial */

#rncl-ude<sbdio. h>
n)arr)O ..:..,:.:

(?"
ul$otl

product = product.*r,nuryr; ,i. .i

nrint- f /tr\n {-lro F*nJ-rrria'l i:i,;::l;a.t ^;;a;;.ii.PL rrlL! \ \Jr LrlE !du.LUI IeI ID ,?Y....r I/r91{q9L.,l .ti

ffin
f*'*It
li
I

i

t.-

t p r.rt

rtr:r th* numbilr : 5
'ir,t 1i,i-:tr.-,t i;i I : :; ti1,,.i

i i.i: i.fi'i1ir.r,1; r'r;,i.;;rj.;i::,il hiV* i-.een Wltten as :

:" -- | ;,'r,.r,;-, -j :. i<= il{tli}:,1.i)
.;l..iil,..i :1: i.ii{,id!irji

* i l

'{'lr i:;ni,.'illlfe',v'f i,,'i"l$6'{ x i.l n f'lc':i rtrd r iq t!fi infeggr.

,, r - ". ;.::lllt?l*ji r.tt' ,ri: */
.a'

',: '

' :ll "t
i , .'1 ,, rrrLr*vj n 1 1:.,t &f :

,'| ,

l

li

., l,,,' r, .;.1:,.;lri,.'.,':;'rifiillti;

ulsllln
C Progranining

a

Enter the base and power : 2 3

2.000000 raised to 3 is 8.000000

Outout b

Enter the base and power :2.5 2

2.500000 raised ro 2 is 6.250000

Nesting for Statements

One for statentent can be written within anoth*r'tbr silrtenrent.. This: il rallcil llrr,ti,lq -rt
statements as ilh"rstrated below.

for (i:1 ; t=25; I ++)

fnner for

Here, for every of i, the inner loop will be executed ten times.

Note: We had earlier written a program to display a triangle of numbers using the while loop'

Another triangle is now illustrated using a for loop. The following triangle is called the "Floyd's

triangle".

I

23

456

78910

Program: /t To draw a Floyds triangle using nested llor loops */

ior(j-1;j<:10;j++)l{l
}J

C Prograrnning Control Statements

i.irres?il);,

To display a rectangle of n rows and m columns filled with the character ,*,.

{.**{<***
{<**{<:|<*{<
:$ {r *:$ * *:F
:l€**

_________v_J

8 columns

}o**,

pr,intfli'i \n, 84t.1

,$ca4f t *€djii,Sr,nci'i;iliiriji*llfiriiit'ri' ffi'lTifill;l;5 .giililri"ffi * +*ffi t-"*t-ffii= ri+ *',,1;,.i'.
r,,,$lir..'.

ii+,,,f i=.ttrial+r;ti+..';,;.ntr-t,.,..' ji;,irti,li,,;"i;;'..,
:i : :i: '

l:i :::::l:.. :rl ' ;i

. i,.:l::;,:r :i:llr rf

.|||i|||:'::|i1:.:|:.:|i.:::.:\j|'i|:|::.:.|:|

3' To display multiplication tables 2 to 9 (n multiples each). The required display is:
2xl=2 3 x I =3.............9X 1:=p

2x2= 4 3 x2=5..............9x2 - 1g

If th9 multiples do not fit on a single screen, display each screen after a pause (about 24multiples will fit on a screenl .

/* h{uitiplication

irh c'tir* s < st ii*8tii$$i

l"
. rn**t*"*********

T-'rlll .-;ro*or; l

*:rifrti(,'\n,flclr,

+;lt,,1j,r:,i, ,,i.1i;'';1i,ii. .,,:ii,. liil,lliliili;'
'l.r1li;,;.i;

...,'lt ,,t ,,l.tj;::..::.,r,rl.ll.'.'lli '.',

' :'.,. t," q:", tn) i

,al
t: t! i :)- l'\:J!i, |) : : :'j:

(): C Programming . Controtsl;riernenls ;i;*,$*rini,,.*,i'
' iffifiiitrrth4;|ij'i

liliji

This program, for each value of multiplier,

4, Write a program to accept a positive
e.g. 8 =2x2x7

table_of varies from 2 to 9 thereby giving each row.

integer and find the factors.

#fhetiide<stdio.h> , i',
#include<conib 'h) ' i:

V<lidj;rnaI'n(}'

' ' 'l;i,,*,0,,;;'''' " ' '''

l,*irlisil:"*;;...;;; i'o':n'r Nun ber") ;

: sl'.ir,4l;*,,,,; - '6:jli f i*,.,.;.i, , i**,) '

'l.i,',,,|.,,i1i1i+..."*' l ll':''1

5. To display 'n' Iines of the structure frorn the center of the finst line on screet!.

/* Triangle using the * character

#'i# *u;u uti$',iii1'111,i1,,'liil,i;i1i;liiliiiliiiitiir;iii

8l

.l :t .l :il,: ,:. ., . .,:: : ., . :::. :: , i' t. t. t
.':. ::.... . :::::.:,,!:,, :::.,

.. ,-... .. .:: : r'. ..:::.:

ncj:-o:f :stars; line*nc,

ffi C Programming Control Slalernenfs {.),
Elt*illf!

'i
:.i..,:., : :.' . r,::j.ri:rj^,il.t,:::;.;]i::;ll; :.

l:.
l

+il.:.,',,,,'';::i.,.:lii:::::::,:,:,.;..,, i.,:. ',,'u:::l.iliilill..ul......ll....].

/i" ,Uiipiay'::isp[s** * 7 ' ''' ."' '

=. t'i
,

n9f,'9f-st,ars<=!lne^=no; no-of stats+ i), :,, , ,,'.'...,

.. :.'.''..:rr:;:li.iir'.r

printf ('%*S'r, spaces, "tt);
6. Write a program to print the following pattern:

ABCD C B A
ABC CBA

inf 'r I ,rn'rirtttr ti, .-.f vrs..ut..'clr-qcr O i
for (l=1,; L<*4;1++)

, il ,

spacsg

!:

ii::ii:ti;ii iil

it.ir;

4.4

4.4.,

Q: C ProgramnirtlJ " C('ntrol5i.?lements Wffi8ton_ **-*=_ -"_ ___-.-- * iffi

JUMP STATEMENTS

Breal< and Continue
We have already seen the use of the break statemcnt in the switch-case statement. It also has one

more use.

Sometimes, it is required to exit a loop as soon as a certain condition is mel i.e., to force

immediate termination of a loop bypassing the nornial loop condition test'

When the break statement is enc<luntered inside a loop, the ioop is immediafely terminated.

Subsequent sfatements in the loop are skipped and program control resumes at the next statement

following the loop.

Breal< Statement

Format: break;

Exn.mytlcs

1. Tire fbllo'*ii'lg llrtrgn*r,u ci:ecks w'hethern nulnbcr is prinle or not,'[o check a prime
11nnri)er, ,w.c sll,r:q:cr,sivelv rtriviri* it l.r.y 2 t* liumllrur --1. {f if is divis;ible ttre uum}rer is not

nn"imae" T'i'll-u;, tr; r(i!].i lis wr: gcl a {'} r*:anaeudei', we h:nva to lrrenk out of the lorrp.

: ,)::;!..:.1. i.. .. .:i.:..:t.i:)

ii tn'.i*-:i1t
, , ,,, ', , :

'';. ..:',.. , . ..' ,
'.',.,', l: :,' i;;::',:,t'ii

l'.,,,'I., .. l'' ',.,..,..,.,,::,
:i :

r,,, .:,',,,,,, ':
' ' ,',''.',.......'i:,..,.,

,,, ,. . , ',1,"..t
.,.',..r.............,i11,,-ii.l'ill

Note: If there are nested loops, the break statemcnt rvill cause exit only from the innermost loop.

t ^^,,^r -1 ,

f or (j-:1; i<:5; ' i++)

{ for(j=1;j<=5;j++)
{

W c programming . controt statements (),w t[,8,8n

printf (r'Enter a number: r') i
scanf(u%du,&n);
rf (n<0)

L-^-1-,pL gq^,

j

count++;
1

Here, if the user enters a negative number, the block statement will take control to the statement
count++, in the outer loop.

Continue Statement

The continue statement is somewhat similar to the break statement except that it does not cause the
loop to terminate. It bypasses the rernaining statements and it forces the next iteration of the loop to
take place as usual.

Format: continue;

Example

do
{ prirttf (r'Enter a nurnber :");

scanf (tr*.drrr&n)i
if (n<0)

cont inue;
sum-sum+n;

) while(n! : 999lr;

This code accepts integers and calculates the sum

after the user enters 999.

of only positive numbers. The loop terminates

In the case of for loop, first the increment part of the loop is performed, next the condition is tested
and finally the loop continues.

while (condition)

continue;

T:"0'

)

,,6/,i', C Programming . Controlstatements ffi
Examples

l. l-nE r:3 ;

while (i)

t:

!! \r --
J,,

break;
printf(iltdu,i)

l
o/p. 4

I r^+ i-q.
attL r-Jt

while(i)
r i --Lrf

r! \r-- J/

continue;
printf ('rtd",i);
i
o/p 4270

4.4.2 goto and label

The goto statement is an unconditional jump statement, The goto statement (although not used
frequently) is used to alter the normal sequence ofprogram execution by unconditionally transferring
control to some other part of the program.

Format: goto label;
The statement where control has to be transferred is identified bv the label.

i. A label is a valid C identifier.

ii. A label is tbllowed by a colon.

iii. The label can be attached to any statement in the same function as the goto.

iv. The label does not have to be declared like other identifiers.

Example.

loop:
]1!4 .

if(x<100)
goto loop;

One good use for the goto statement is to come out of several layers of nesting.

Example

€ar I \

I farl \

W C Programming Control Statements (),,
urst0rl

{ whiJ_e(...)
{

if (error)
goto outi

t
)

L

Note: Control cannot be transferred from outside to within a loop using the goto statement.

4.4.3 Using exit() Function
The exit () function causes immediate termination of the entire program.

The exit () function is called with an argument 0 to indicate that termination is normal. Other
arguments are used to indicate some sort of error.

A common use of exit () occurs when some mandatory condition for program execution is not
satisfied. Invalid password entered, absence of color graphics card for running computer games,

negative or invalid input entered, etc.

Example

main ()

{

i nt- nnAa.

printf ("Enter the security code: r') ;
seanf (u%du, &code) ;
if (!va1id(code))

:::

exit(0);

)

In this example, a user-defined function valid (code) accepts the code and validates it. If invalid, it
returns 0 and 1 if valid. If the code is not valid, the program execution is terminated.

Another use could be in the switch case statement as shown to stop program execution if user

enters 4.

do
I ah : daf.h^r1\.t vr. - Yvuvrrq! \ / ,

switch (ch)
{ case 'L' : add-record O ;

DTEAK;
case t2' : delete-recordO;

(l: c Programming t contro! statements ffiut3roil @

case t3t

^^^^ | A I

break;
. rri ar.r raanrAc / \ .

svv! sv \ / ,

break;
: exit(0)

)

) while (ch!:'4'I i

4.5 COMPOUND STATEMENT
A compound statement (also called a "block") typically appears as the body of another statement,

such as the if statement. Declarations and Types describe the form and meaning of the declarations
that can appear at the head of a compound statement.

Syntax

compound-statement:
{ decl-aration-1ist opt statement-1ist oos i
decf aration-l-ist:

declaration
declaration-1ist declarati-on

^+ ^+^na^h+ I i a+.

statement
sLatement-1ist statement

If there are declarations, they must come before any statements. The scope of each identifier
declared at the beginning of a compound statement extends from its declaration point to the end of the
block. It is visible throughout the block unless a declaration of the same identifier exists in an inner
block.

Identifiers in a compound statement are presumed auto unless explicitly declared otherwise
withregister,static, orextern, except functions, which can only be extern. You can leave off
the extern specifier in function declarations and the function will still beextern.

Storage is not allocated and initialization is not permitted if a variable or function is declared in a
compound statement with storage class extern. The declaration refers to an external variable or
function defined elsewhere.

Variables declared in a block with theautoorregisterkeyword are reallocated and, if necessary,
initialized each time the compound statement is entered. These variables are not defined after the
compound statement is exited. If a variable declared inside a block has the static attdbute, the variable
is initialized when progtam execution begins and keeps its value throughout the program.

This example illustrates a compound statement:
if (i > 0)
{

linelil = xi
x++;
Lt

i

In this example, if i is greater than 0, all statements inside the compound statement are executed in
order.

ffi C Programming Control Statements

4.6 NULL STATEMENT
A "null statement" is a statement containing only a semicolon; it can appear wherever a statement

is expected. Nothing happens when a null statement is executed. The crorrect way to coitre a nuii
statement is:

j-f (1) ;
for(i:0;i<10;i++);
whil-e (i++<i-0)
t
]

Note: Statements such as do, for, if, and while require that an executable statement appear as the
statement body. The null statement satisfies the syntax requirement in cases that do not need a
substantive statement body.

As with any other C statement, you can include a label before a null statement. To label an item
that is not a statement, such as the closing brace of a compound statement, you can label a null
statement and insert it immediately before the item to get the same effect.

This example illustrates the null statement:
for (i = 0; i < 1-O; 1j-ne Ii++] : 0)

In this example, the loop expression of the for statement tine[i++] = 0 initializes the first 10
elements of line to 0. The statement body is a null statement, since no further statements are necessary.

,.:.

F

SOLVED PROGRAMS
1. Write a C program to display the following pattern:

ltli;li1iii|:ii

A

,rt''" " "ron "tr* ' tonuo, tr"r"t"no ffi

6fS6 ,,:i'i;',1.';.t'.' l'i'''i

tt.', i
**"0

,,.....1.r printf (:ii.ftq !1 ,',"rr u

:,: !;l j,iJ r, '
-
r ', :,::

*','::
,

:,,1:,..f ,:::.. ,
'.

..:', .,.:

2. /* First n prime numbers, use of nested loops */

;'nliffi
'*Eii';#f'fifi i+..irilffi iffi ,rr..tir'tl'lfi,--i-i;;ffi

How many prime numbers? : 5
The l'irst 5 prime numbers are : z 3 5 7 U

W C Programming Control Statements (,/,
!.!13FiSn

3. Write a program to compute the real roots of quadratic equation
pxt + qx * r = 0, The roots are given try equntion
Xr = - q + sqrt (q'z - Apr)l2p and
Xz = - e - sqrt (q' - prl?p.

*llnctuue<.'d[u,*a:. #l'.,,,,i111. ,,, i, ,,.] "'
, , ' ' ',,

$t.il'lii$.3:I;;'#?i.3'l...1;;..:......'..];..].

1iolo mar-n ()

; **{n}f lrrHnfar
;;;;;i,irriiii,,::;,;;;:il"tent$\'n"rt''

:

dlsc*q*g*4np*r;j.f,i(dlsc>0, ' ; ; Ji-TifJf '; "Tf;::il
r n an i . /

x,tm (*q+$ert (,disrc,) | / {2*p,1.1,:i1,;,, r;irijiii..,
x2* (-q*sqrt,(d #i
printf (t'The root-s are distihCf\n't) ;

iiiiii..ii.i',..t''o"
i l;:,:;iI,f, ,,(fi | 6 c Fe Q)
;....i. r 1!;r,,:,1;.. l

/*EUU'al
,rooi6

*/ .' :t

i,.iiii,,fiii:iitll+i;iii:;-:;,r,.nn:?+)rli, :. :'
ril.ii.li.iriglfilfiJ;.t-*t1nx2=!r\nn,t,*,11*zi''r . " :':,,)i

..1,;,,prlntf (rThe f ir.s,L ..root;*tf Iitf \htii xL, x2) ,"
,, i:p'#,tntf (uThe

ise:ggndr:rroo,taft,f,',i$f \rril;:x1. r x2) ;
$.e,t'Ch, 1;; .,',, ,.: I''1 ., :. ",..,.'

'..I,' ' r

4. Writc a program to display the following pattern:
AI
B?,
D4,
G7,

c3
E5, F6
H8, 19, J 10.

t

'y,

;,;; ,,::,t'",;;;""' ,t'r; ;,li,,i;t

. ,,' . '' : : ; 11.1 .; ,.,,.... !;t.;,;;:;

': l

nUmber cf l.inest rt) i .t .'' -
t'

oir. eoto - o:m

irili
liiirtiiii
'{,#Iii
I ill::: iil: l:l: I

{#i,i,ilii!jt

5.

u,Ed"n c"rogr"tt,rg . corrro,"rrr"t"nr, ffi

What will be the output
i. svitch (i)

{
case "halto"I
case "goodbye't I

ptintf ("Graatingc") ;
break;

case default;
ptintf ("8oring") I

I
Ans

In the program it displays seven syntax elrors on the first two case statements. Because the

syntax of case is wrong. The case statement take the column first and then expression, but in the

program expression is first and then column is mentions.

ii. void uin() {
i.nt i;
f,or(i=7;!<4;

svtteh (t)
ease 7 : pttntf,

btea*;
t

cage 2 : p;intf (t'9dt', t);
bzeak;

case 3 : pttntf (t'*d", i);
braak;

]
evitch (i)

,
Find and explain the output of following program.

Ans
Correct code is
inl- i.

for (1:1; i<4; i++)

switch(i)
{

casel :printf (r'tdr', i) i
break; //misplaced break
case2: prlntf ("tdn , i) ; / / ease outslde swltch
break t
case3:printf ('rtd", i) i
break i

)

swltch (1)

case4 :printf (Ittd", 1) i
)

i++)
("*d", t);

iitililltlflflttill,ji:i;.,ttii?."1tt:i;iirtliijj!,j.tiltttii,{ilii:tiiitiii?illi}iii:iti:liiit{tti.til,!,.tj.tr1

'W
c Programming e control statements tkrw;w UtStOll

l= I i<4 switch(i) t++

1 1 < 4 (true) switch(1) so case 1 will be executed
'1 will be printed 2

I 2 < 4 (true) switch(2) so case 2 will be executed
2 will be orinled

3

3 < 4 (true) switch(3) so case 3 will be executed
3 willbe printed 4

4 4 < 4 (false) Loop over

Last switch willbe executed i = 4 so 4 will be printed
Output = 123 4

ExeRcrsEs
A. Predict the output of the following:
t. mai-n ()

1V.

J inf v - 1'I rrrr
^ - L t

switch (x)
{ case 0.

^-^^ aUADC 1

UODS Z

case 3

default

X+=
X:

I;

A.

2;

ii.

Itl.

)

printf ("%d" x) ;
i

main ()

{ int x:5, lz:5 O , z: (x+y) * 7a ;
while (x<:5)

y:y / x;
i
How many times will the
in+ 1 - A.lltw L - a t

swrtch (1)

{ defaull : prlntf ("A") ;
. case 1 : printf ("Bt') ;

case 4 : prinlf("C");
]

'I 6An ava^1rf a ?

main ()

{ 1nt i,),ki
for 1i=1 ;)<=4; j++)
ifri*4==12\
-- r l

goto there;
else

prrntf ("here\ntt) ;
for (r:1, i<:5 i++)

{ k = ixl,
thora . nrinf f /nl- hara\nil\.urrvrv \rr / /

)

1

C Programming Control Statements

main ()

{ int c:9'7 ;
switch (c) ;
i case'at:

if(c>3)
^iea

ll-\1.

U- I V ,

printf("%d",c)i
]
)

exerclses

1. Write a program to display all Armstrong numbers below 1000.

(An Armstrong is a number whose sum of cubes of digits is the number itself.
e.g., 153 = 13 +53 +33)

2. Display all perfect numbers below 500.
(A perfect number is a number, such that the sum of its factors is equal to the number itself. 6

=l+2+3)
3. Find the sum of first 'n' terms of the followins series

i. 1+3+5+. ... ii. x+x3+x5+....
.x'x'lv. x-2 +t-......

Accept two integers a and b and display a*b , a/b and a%ob without using *, I and Vo operators.

Accept characters from the keyboard till the user enters EOF. Count the number of uppercase,
lowetcase alph"bets arrd yowels in the text.

6. Write a program to display digits of an integer separated by tabs

Example: 1009 -+1 0 0 9

2000-+2000

llt.
123
l! '21 3!""'

8.

C.

1.

2.

3.

4.

).
6.

7.

8.

9.

10.

11.

Accept data from the keyboard and check if it is valid or invalid.

Accept lines of text from the user and find the length of the longest line.

Review

What are the different forms of the if statement?

Explain the switch-case statement with examples.

Differentiate between if-else and switch-case.

Explain else-if ladder with an example.

How does a do-while loop differ from a while loop?

Explain different ways to terminate loop execution.

Explain the for loop with examples.

Distinguish between break and continue.

Write a note on goto and labels.

Illustrate, the use of the break statement in the switch *case stotenrent.

Discuss the working of if-else and switch statement.

l:i:iffii#l$;ffi *_ _cPrasrcmmins. ' controtstal:,n'nt" __ urfol

:' ,, Collection of Questisns,,asked in Previous
l. : Write a prcgtu* to

"**"pn
a pbsitive inreber and fintl the fuctors. e.g.

2. Find and expiairt,tho oulput of fbllowing programme:

"-::::':ll"--" ,, ."""' .

""i'?,'.1?il,gi;Lr;n,'rl,, r', " :

.":J'JJl,.*rr, ,'" ,

dilry;4::: *il;;;.,.

,, :, , ., , , . ,:. ll:.'.1 ; .'.:t:::t':::' :,:,1,:::,':.:.:"! ::
: .., ,1: : ,1 : .:,: -. : :,:::,:i--i ::a::,:::::a: Ii . ; : . , :, ,,....i ,

j:i:.':llrl..,.l,i'1,,.';
.

r: :: ':.:: I :;..il:tl:::llt.:,..,.
'li:::j.:lfj,f::,:l,t!:,:'.:,:,.:;::.::ri:,,. !.i::r:i,r,r:i:jr,r!:i:I,.:!t:::,,:,ijtI,,:::::,,t: u.rr':,;''::.:.

,,: ::1,i','iir:, .': .,1.,,,,. r,';,li;:,:,,,r,.i,:;...,i',ii,',;;,,,,,,
:l:';

,,.'.. ,:. . ::::::::..' .l
t . .:....1..: .: .il :.. ,.,,, , 1 ', ,,i::,,,: .r.. ,.. .. :,

, , l,,,1 ! ::.,.iil!.!.1,,.,.
i i!i : r'i:ll,i.,i,i,'!!i,, !!t,ri.:,l1

: .:. ..':.:: :.::::::::1:: rv:::

, ..,,..... .'i:l: ..,.'ir..
., : .'.,, : ;r:,r[Oci;,*009,*' $.Ml

:,: i :: ?t! tt)

:r :.:i..i

,, .tl

t3" "u" oo ''

A i A ,. ;,
4. , Write a pro$rani which accept b strihg

and special char,actcrs in a string. , ,

rtdid SEii a ll

+ 4r v r r'

rvr \f,
.-: .r

)Wl f,Uir ,

fA.q6 .l

piinlf (trAd1, iJ,i
nreaK i i

^+.i n+ 6 / {S/itf i 1 ;
PI:IrJqr I oq / r/,
preaK; :::::::::: .. . :i

and c,gunt numbei of 'line$.

. l. '.' I .'.

5. Find and explain the output of fottowing prograrnmc:

i < 4, j r r)
ri\ :

,r r/
. ,ryin+.F i trg;tr: i)i. y!arrsr: \ 9*. r,
. :r ,bJ:,,6iJt:ir,rr ir, ::,,:.:,;:.,:,:7!t.ti:;i;1i;ii:i;;,,1.1,11,:t:.111:iill:r;

lqoq J

t).

R

;witcli (i)
;

\\'rite a C prograrn to display the f'ollowine aattemr' *'A ',
:.,).: : t ::.frt:.:. :t:..1:: :t:: E : ::

HU

S l','
realtho

f3.
i,
Hn I9i Jlfi.

urrfl

tr$-ffi
}? d i-e.[La

1 dqmql S,rg$ltffi,**F6**-,

5. I I NTROM UCT'f, ffi ru

St-r far we have used vai:iables to st,lrc a single ciata item in tlermoly^ Horu,,ever iti tnatry applications

wc need to store a large amount of data. Thus, we would have to declare and use a large number of
variables, r',,hich is very inconvenient.

Moreover, these variables are independent and unrelatecl to e;lch ofher. lr4lrny applications require

multiplc: data items to be grouped so that it beconies easy to lrLanryliiale thern. This can be doue. usillg

an array.

D efin itio sl

An array is a collection of data itt:ms of the sante cinla typo refryti:r"l lt by a col11ilorl name'

Individual data items can be accessecl hy thr: narne of lhe array end an integer cirlled fhe 'itidex' or

'subscript'. Thesr: itenrs occupy contiguolls or consecutivf metttrlry locatiotls.

An array is also called a "subscripted variabie".

Single and Multidirnensional Arrays

An arral' having only a single subscript is rellened to as a single subscripted, litttrrtt' or

one-dimensional array.

An array whose elemeuts ale specified by two subscripts is a two-clirncnsiotral al'ray (ills() t'rtlirrti rr

matrix).

Conceptually, an array can have any nurnber of dintensions, limitecl only by tlrc ltvlilrrlrlt^ irrclrri)i'-\1.

5e1

a

a

o

5.2 ARRAY DECLARATION
An array iras to be declared before it is used in C program. The declaration tells the compiler,

the type of the array,

the name of the anay,

the uumber of dimensions,

number of elements in each dimension.

Syntax: data_type array_name Isizel-] lsize2l Isizen] ;

data_type specifies the data type of each element of the array.
alray_name is a valid C identifier.

lsizel] '.[sizen] are the n dimensions of the anay. sizeL....sizen ar.e positive integers
indicating the maximum number of elements in each dimensions.

Note: For each dimension, an array subscript begins from 0 and has a maximum of size- l.
Example: inr a t 10l ;

char name t80l ;
In addition, a storage class can also be specified for the anay (default is auto).

Example; staric inr x l2Ol;

5.3 ONE DIMENSIONAL ARRAY
A one dimensional array is declared as follows:

oaE,a_type array_name Isize]
Example: inr ntlOl;
This is a declaration of an iuray n of 10 integers. When an array is declared, the compiler reserves

or allocates a block of memory large enough to store the entire array.

The total number of bytesallocated is:

Total bytes = length of array * sizeof (data-type)

Thus, for the above declaration, 20 bytes will be allocated (considering that an integer requires
2 bvtes).

ffi
Address

1 000 1002 1004

Flgure 5.1: One dimensional array

1018

'?&
C Programming ' Array and String W

5.3.1 Initializing an Array
Just like ordinary variables, an affay can be initialized when it is declared. The entire array or a

part of it can be initialized. An array can be initialized by the declaration followed by an=sign and a

list of values enclosed in braces and separated by commas.

The values are assigned in order, to affay elements from subscript 0.

Example

f. int num[5]:{10, 15, 25, 90, 100};

t1l 121 t3l l4l

Figure 5.2: Array subscripts

a. During initialization, it is not necessary to specify the array size. The compiler allocates

memory to hold the initialization values.

int num[]={10, 15, 25,90, 1,00};

b. If less number of initialization values are specified, the remaining are initialized to 0.

int a[10]={1, 2, 3i;
Here a[0], a[1] and a[2] are initialized to the specified values and the rest contain 0.

c. [f more initializers than the specified number of array elements are specified, the

compiler gives an error.

char c[5]={tat, tb', tct, tdt, tet};

5.3.2 Accessing Array Elements

To access a particular array element we have to specify the name of the anay followed by the index

in square braces. The index indicates the panicular element we want to access.

Syntax: array-nameIinceger-expression];
Example
nt0l refers to the element aL position 0, .i.e., the first element.
nl)1 roforq fn fhe olcmanf at nosition 2 which is the third element.tt L-)

An integral expression can also be used as a subscript. Example is as follows:

n[5-2]
nl1++l

"ii-zin[--i]
nIi+j]
are all valid.

W , ,r:lramming . Array and string Q,z

Assigning Values to Array Elements
Values can be assigned to individual elements by using the assignment operator (=).
Syntax: array-namelindexl:vaIue;

Example: ntol : 20i
LLLLJ _ JJ,

Entering Data into an Array
In rnost of the cases, the values are not known in advance. ln such cases, we can accept the data

from fhe standard input device (stdin) and store it in the array. This can be done in folowing manner.

The fbllowing code accepts ten numbers from the user and places them into the array.
for (i:0; r<10; i++)
{ printf ("\n Enter the value for oo.sition *rltr- i);

scanf (rreciil' &nIi]) ;]

The Value of i goes from 0 to 9. Initially i=0 and the scanf statement will cause the integer read
from the ftL'yboard to be stored at the location (address) of n[0]. This process will be repeated for the
entire anay.

Warning
(l docs uot perform bound checking for an array, i.e., it does not check for the validity of the

subscript. This responsibility is of the programmer. Hence the programmer should ensure that the
an'ay lcngth is not exceeded. otherwise some other data may be overwritten.

Exarnple: int. n [5] ;

f or (i:0; i<1_0; i++;
scanf (u%du, &n Ii]) ;

This code is perfectly valid in a C program

Reading Data from an Array
All the array elements can be read (accessed) from the array using a for loop as shown:

for (i:0; i<10; i++)
printf("\n The value at position td is td'r, i, ntil) i
Examples

l. /* Program to read [0 integers in an array, display them and calculate their average */
+ i 1 c r uae ! l'iai:Cjii$?iffi
niai tr

1{.,i i :::i'j,r.;,,i,..iii

'$*l;,fj*ffiZ. n;iEpC.;:ifai"fl

'";1.i,;r?ittfi:fiffi
]1 . fi]rY.*i;'i';,T +ei**

ur(lf, C Programrning . Array and String W

Note: An operation cannot be performed on l numeric alray as a whole. The operation has to be

performed on individual elements.

An atray cannot be directly copied into another by using the assignment operator. Individual

elements of the array have to be copied one-by-one.

Write a program which accept the array of an integer and find

GCD and LCM.

* :Af:f:.t,aJ i

'&$rlli+

,,t'dr'iii

':.::
::;;;a;,
i'r;Yls-ww:'i

5.4 M U LTI DI M EN SI ONAL ARRAYS
Multidimensional arrays have more than one subscript. Most oflen, we require these for storing and

manipulating data structures such as matrices and tables. Here, a two-dimensional array is used. One
subscript denotes the row and the other, the coiumn.
Examples

f. inr m t3l t2);
m is declared as a two dimensional array (matrix) having 3 rows (numbered 0 to 2) and
2 columns (numbered 0 to 1). The first elemenr is m[0] [0] and rhe lasr is m t2lt1l.

2. int arrt3li4lt2l;
arr is a three dimensional array which can be thought of 3 two-dimensional affays having 4
rows and 2 columns each.

5.4. I Initializing
A multidimensional arrav can

int mt3l t2l = {

the Array
be initialized in two ways as illustrated in the example below.

1)

AF,
j;

or
1nt mt3lt2l : {1,2,3,4,5,6};

Note: while initialization, the row dimension (first subscript) is optional.
E.xample

1. inr milt2l : {1,2,3,4,5,6}i
All or only some elements could be initialized.

2. i-nr I4li3l : {

{0},
t1 ,\
{3,4,51,
{6,'l ,8} ,

be
tiit::ii

initialized as shown.

-

",(/;l
C Programming ' Array ard String 't'ffi

5.4.2 Memory Representation

The arrangement of elements of array rn in thc prcvious exantple c:an bc shown as

Row 0

Row 1

Row 2

These elements are stored in cclntiguous memory locations ruw-wise, as illttstrated below.

mtoltol m[0][1] m[t]tol m[1][1] mt2lt0l m[z]t2l

Figure 5.3

The three dimensional array num in the previous example can be represented as

2D Array 2

2D Array 1

2D Array 0

row 0

row 1

row 2

row 3

Flgure 5.4

Col 0 Col 1

col 0 col 1

47 1n

-.*J"
10

12";*
IT F

20

I
22

-l 2

4

b F
1

24

?

16

5

I I

Memory Map

*-2D Array 0 -> | <-- 2D Array t -+l <-- 2D Array 2 ---->

1 034

Figure 5.5

5.4.3 Accessin g Array Elements
The elements of a two dimensional array can be accessed by the ftrllowing expression:

array-name[i] []
where i refers to the row number and j, the column number.

Example: mtll tOlrefers to the number 3

For the 3D anay, three subscripts will be required.

Example: num[2]i1l{01 refers to 19

We have already seen how data for one-dimensional anay can be accepted from the user. A similar
method is used for a two-dimensional array except that we will now have two loops, one for the row
subscript and the other for the column.

For every value of row subscript, the column subscript has to increment from 0 to number of-
columns-1.

Examples

The following program illustrates matrix additions.

l. /* Program to add two matrices */

ur?rf, C Programming . Array and String ffi

j i+i;ir

iil::,::. i l. illli
'l..tlltlii!.i.liii

rtiifi:?..!:ii;itiiliT.il:itr! j!;lii jl,ifJtlilr..l

Output a
How many rows and columns in

How many rows and columns in

Addition not possible,

matrix 1?

matix2?
z
3

-J
;

Output b
How many rows and columns in matrix

?2
How many rows and columns inmat'rix2?:

zz
Addition possible

Input Matrix 1

Input Matrix 2

11
11
The sum is

1

3

2

4

)
A

,, Write a program to read
transpose.

m x n size matrix and print its

P54 'l/6,f,u€i f' ,MA'C;ix,ll:) ;
:::::.:

pr1nt f ('ti,\nrf) tf .':.
ror:t i*0lljial;:1+1j

,,.,t..t. ''.:.':' ', ;

.i.,

3.

U{l;r C Programming . Array and String W

rf.l;t::;;l:ilHli"';ffi"
.1r.1,,..,'r,'ror lJaor.Jilrt:; j,f'1;t'il....,it.....;t.

.'..,..

rtr'r'
..'i.{ t";; ;*,-i

i#
iil nil#+

t*'

.:1,

,
i;i'i-o; : l;;;;;" t'...ft,

...,.,. .,. ':.'.',"""'
'
' '''.'

,;,,;,,,pn.{;h,,t,f iliitnln t) ; -' ::i.i ,. .: ,,1.-,:.,:r::,::,.,,:',:., ,,: :i,l : :t.:. . : !!::l:!!.:.r'!.

',.'''t'rt;"",'{.,li*li,ma.r,f,f *,f1f.' *rri,t,r*i,,,,oro"rin,.\1.i111.,,1.,,',
'"'Y1t"tf.,l;,i,),* '.*#*.*,1.,.,i.1,.,'-it"ut*l.,oioeri",ll;.t'.;,

"i

.,.', '

,. :.,, ,,1,.:.,,'.l

i'*..ji..'t iiti.'i'..ii

it:

)i+:t.tl

ta;:,,iall

;i;i,ii;
iliiiir

Accept 5 x 5 matrix from the user and display the sum of each
column.

ii. lijrr..:::, .:. .'lr:i'11.::::..'. .ll:.. .

l i:,11'ti$it r",qif m#p,..a, t $;1 1 i,$,,1 ; n* st i,,' *#5 ; I ;-u*ff'{{ffiffiffii'--ffi

-.*il*
ffi=----=*=ffi

5.4.4 Limitations of an Array
i. The compiler uses static memory allocation for an array, i.e., we have to specify the aray size

in advance. It is not possible to increase or decrease the array size atruntimJ.
ii. Elements cannot be inserted into an array.

iii. We cannot delete elements into an anay.
iv' If the number of elements to be stored is not known in aclvance, there may be memory wastage

if an anay of large size is specified.

v. If a small array size is specifiecl, there may not tro enough memory to place all elements.
vi. C does not perform bouncl checking on an ailay, i.e,, it does not check for the validity of the

anay subscript, Hence, if the anay range is exceeded, some other data nray get overwritten,

C Programming Array and String (.k
utSt0tl

Accept 5 x 5 matrix from the user and display the sum of each
column.

1;...' : ;;;.1'.:; ; . ;':i;,;.;:.;: :,. .7.11,1;,;.1;.:.1,

:;i:ir1;:i::i i;'in ir.:':: 1i:i j:ijl

-llfi#fffffi$q'*,r**
ll

ll

',
,
-

'*r*='*
l'l'i'i.u'tllil*i *l;r.li,+li**i #t*f*1I,--*r*i ,,, :,:,,ii,,,,u,=i,,,,,*i

-;ii++

ffifiirl' llt'it
','-"iii

l-',=',
-i*****

'ffiffi*
ilililii iil i;*iil#".

-.-r

iliil'

*Iilil##ffi

!:,J:,:i;tij!,:,.':t:,:.:.!!.,/:4v4jii:+:::1,1,,.YIY: ../:ls..Y:+i+ ll.t|!::i,
iii:ir'j:iJr riil':,iil:r::l'::i:j'lljriiii;:iiii:l: i i'-: - : :::':l,lt':iitiiiil liili:',,t.:l:it:jri,i,:L: . 1in..,#+t',*,..

-+'epr+tu,i'',.',..
.l,,iiti

'1*i......i+li.iilLil'l++

**ffi

5.4.4 Limitations of an Array
i. The compiler uses static memory allocation for an array, i.e., we have to specify the array size

in advance. It is not possible to increase or decrease the array size at runtime.

ii. Elements cannot be inserted into an array,

iii, We cannot delete elements into an array.

iv. If the number of elenrents to be stored is not known in advance, there may be memory wastagc
if an aruny of large size is specified.

v. If a small array size is specified, there may not be enough memory to place all clemcntn.

vi. C does not perlblm bouncl checking on an array, i.e., it does not check for thc validlty of tho

array subscript, Hence, if the anay range is exceeded, some other data nray get ovorwrltt6n,

ur{l;n C Programming . Array and String W

..:.::::i:l'iplai'li:i..:i:.:li:*:or'.t'"

...'.Iffi#il;*#* i-*;il+",'*t t-li
u'-.iri;f;;;i";; l''+*-',rl*'ffi-*','-'' -"- **1fi*1**ffiffi.'Ir - -

.' 1.
.,rr....1..'.,',ii...,-*,,.

ltntiTii

5.5 STRI NGS
A string is an amay of characters terminatecl by a special character called NULL character ('\0').

Strings in C are enclosed within double quotes.

Example: "Welcotne to C" is a string and it is stored in memory as:

1 000 1 002 1 004 1 006 1 008 101 0 1012

Each character is storcd in I byte as its ASCII code. Since the string is stored as an array, it is
possible to manipulate individual characters using either subscript or pointer notation.

Declaring and Initializing Strings

Since a string is a character array, it is declared as follows:

char string-nameIlength];
The length determines the maximum number of characters in the string.

Exarnples: char city | 10I ;
char name l20l;
char message [80] ;

There are two ways to initialize strings.

i. char cityl] - {tpt,'r-rtrtnt,'€', '\0'};
However, C offers a better way to initialize strings.

ii. char citY [] = "Pune'r;

The compiler automatically stores the null character at the end of the string.

Consider the followine two declarations. Both are valid, however, there is a distinction between the

two.

char amessg[] = "c programming language"; /* array */
amessg is an array big enough to hold the sequence of characters and '\0"
Even if the characters are later changed, amessg will always refer to the same stomge.

amessg C programrning language \0

5.5. I

5.5.2 String Input/Output
The functions printf and scanf crn also be

does not allow a string with entbeddecl spaces.

used with the fonnat specifier 7os. The s,.:anf lunction
gcts() :rllows r string to contain spflces,

W c o m A a o \0

W "
,ronr"*^,nn . oou,

"ro
ru,nn no",

Example: Accept the name of a person and display a greeting.
cher rr:mcIRO'i r

nri nf f IllF.nfar ir^l1r nrm6tt\,.\ lrrulr I t

gets (name) ;
printf ("Good Morning ?s ", name) ;

5.5.3 String Manipulation Functions
C language provides a large number of functions in the header

strings.

The most commonly used functions are:

file string.h for the handling of

i. strlenO: This function returns an integer corresponding to the number of characters in the
specified string.

Syntax: slze_t strl-en(char * s)

Example: char str l2O1 i
gets (str);
printf (ue d", strlen (str)) ;

If the user enters C language, the output will be 10.

ii. strcat{): This function is used to concatenate (oin) two strings. It concatenates a copy of the
second string to the first and returns the first. The second remains unchanged.

Syntax: char * st.rcat (char * s1, char* s2)
Example: char sll2ol:'rPune" , s2t2O): "Mumbai";

strcat (s]-, s2) ;
puts(s1);
puts (s2);

The output is: PuneMumbai

Mumbai

iii. strcmp(): This function is used to compare two strings. It returns an integer, which is

-ve if string 1 < string 2

0 if string 1 is equal to string 2

+ve if string 1 > string 2.

Syntax: int strcmp(char * s1, char * s2);
Example: char s1 [10] : ilABC", s2 [10] : "abc";

printf (ugdu, strcmp (sI, s2)) ;

The output will be -ve, Since "ABC" is less than "abc" because the ASCII value of 'A'
is < ASCII value of 'a'.

Note: The function strcmpi is used to compare two strings ignoring the case.

iv. strcpy: This function copies the contents of string 2 to string 1 and returns string 1. The original
contents of string are lost.

Syntax: char * strcpy(char * s1, char * s2)

C Programming

Example'. char s1[20] :rtPune't,
strcpy (s\, s2) ;
puts(s1);
puts (s2);

The output will be Mumbai
Mumbai

Array and String

^a t)nt _ ilrr,,-L^.1 tr.>L LZV I - !'lutttlAr ,

Returns the length of the string (numbers of
characters excluding the NULL character)

qizo i ql-rlonlnh:r * q'l
v u! !vrr \ vrrsr

Copies the contents of string s to d and returns
pointer to d

ch:r * qir^n\/ /nhar *d ctrar *q lrLrvyf \vrrqr vf et

Concatenates a copy of s2 to s1 and terminates
s1 with a null. Returns s1.

char * sLrcal
(char * sl,char *s2)

inl- efr-mb/nlr:r *e1 eh:r *s?\
\!rll4! vf , vlrg! v4 |

Compares s1 and s2 and returns,
-ve il s1 is less than s2
0 if s1 is equal to s2
+ve if s1 is greater than s2

int strcmpi (char *s1, char " s2) Compares s1 and s2 ignoring the case and
returns similar results as strcmp.

Converts a string pointed to by s to lowercase.nh:r *qtr'lrnrr 1ch:r *q)

Converts a strinq pointed to by s to uppercase.nhrr *q1-rrrnr lchrr *q\

Concatenates first n characters of s2 to s1 and
returns s1 . s2 is

char * sLrncat
lnlrar *c-l ah:r *-) i n+ r\turlu! rf , ulrq! -at lllL 1rl

Reverses the string s and returns the reversednir:r *ef rra\rlnhar *c\

Returns a pointer to the first occurrence ol
character ch in strino s.

char *strstr (chars*1, char *s2) Returns a pointer to the first occurrence of s2 in
s1 . Returns null if no match is found.

Sets all characters in pointed to by s to the value
of ch.

char * strset(char *s,char ch)

Sets the first n characters of string s to the value
of ch

char * strnset
(char *s,char ch, int n)

Converts a string pointed to by s into an integer,
returning the result. Similady there is atol and
atof.

int atoi(char *s)

Compares lirst n characters of s1 and s2.
Returns <0 if s1 is less than s2,0 if they are the
same, >0 if s1 is greater than s2.

I ^+ -+--^'-^rttL J L! tr9rllP
/nh:r*q1 nh:r*<? in+ r\
\errqr rL, LLLV ltl

Duplicates a string at another location and
returns NULL if space could not be allocated or
returns a pointer to the storage location

nhar *c1-r.ll1n/clrrrc *e\

Returns a pointer to the last occurrence ot
character c in string s, NULL if not found.

char * strchr (char *s, 1nt c)

char *strtok (char *s1, char *s2)
Searches sl for tokens that are separated by
delimiters specified in s2. Returns the pointers to
the lirst character of first token in s1.

r1 ltogiarnn;rhi:l Array and String ()"
utStotl

r'l.llrtn/a* r'..-;:tr-.2.- : i:

! \\'l-igq..r 4r.r.r,, trtrr f.g
i''' ,:t'

palinc!mxlt {ir,' }}fi,t
"

; f nCIr..:r{,.S lc.ii{..'l..r.
rllrrt:l'-]Jc .{- l:11c. ^ .

I' fr'--i .:''" ..: ",.- r -l.:. .,.
, .' , 1. L. i) I ,

I

:itr:' s1-.r i..1.'r;
irlr i i l,r.r i: ..rrLl')i!'j.-a

a- t - .. 1 1
-

i..
' \ ;

j:)'.':. j: | , l.llL"r''- I

lql - D \ ') i ... i ,

ilci]p.r,rt a ${.i"ing and check tlrat. string is

! 1 I r,- -:+1'll t \

r,-) i:li-ri r,: f rriri ,,, J,

'' ---t -: -

: .. ' :. !

,iii'

:.:';':":;i-,1;;, .
:

:,.

t

l

L

rll!:

'f'i
, r '.;i

i:tnN' ;ti'td Siring iififr{li'ii;iii

n ch;ll';rctrrs r:,f a strilil; fi'om lucafi.txl ilt)

Array of Strings

;;l;.::.::; ::l';: l

5.5.5

#lnclude<sLclio. h >

An array of strings is a tu,o dimensiorial atr;ry. This is i..,ii.rjir r;..;luii:i:,.i iir ;l.riliiiatiols dritlin.t:-rii.h ;t

list of names, etc.

An array of stritigs can L'e irritirlizeel.

Example: char citii-s;;3 li10i '', 1lil"1'r;ir, 'rr : .'i' " 1 I ";'
They are s{ored as:

In the filllowing progratn, rve
";r"ill

ac'ieilt'ili'tlil{r1ll:l '!tl"i :;lrl 1i:i:l

/* Illustrates an arrsy o[string" */

I

-- - + .'
i

\f! i

rl iiiilrll

,.' .'l

I -._ 1

iI

l1
'|''' '....':
i-..,;. ;

fn*:j;:Il*.,(.)

:)1* l{*t- of)ct30l ; uemn,t'idi
I

naroes-? t'1) ;

*rir-,,i+1) ;
/* List Ii] :s tir,: narrLe cf, .l-+ . t i'i-t ;, *

).> 0)

i !r,l: i

:r+:f l ;i

SOLVED PROGRAMS
what will be the output of the following segments of program code?
f. int arc[t2];

printf (rt *dr , sizeot (arz)) ;
Output: 24

arr is declared as an array of 12 integers; each requiring 2 bytes. Thus the sizc of arr is
| 2 * sizeof (int) = 24 bytes.

2. ehat ettytzol t 'tPuneulpztntt (,t&dt,, aizaof, (city)) ;
Output: 20
city is declared as an array of 20 characters each requiring 1 byte.

3. char narlas{]. U-Y = {,tPunc,t, nDelhln, t,Banga;;orcnll
prtntf (,tEd\t*d", slzeof (nares), ctzeof,fia6snl)) ;'
Output: 30 10

names is an array of 3 strings each of length 10 characters. Thus,
characters. Each string is of length l0 characters.

4. void maino
(ehar massage[]=,tflhis ia ext,remeJ-y J'ong protnpt\n,,

P r i nt r (,, $
"

\ ;*7:,,:" IZ "::r:: ::2i rs" + s 1 ;,
Output is
This is extremely long prompt
How lorrg is it?
is extremely long prornpt
How long is it?
Because, message -+ will print the content of the array.

the size of the anay is 30

message +5 -+ truncate first 5 character from the string and print remaining message.
#def,ine kl{axArraySize I00
inf, majn (void)
{

char myl,,rray I klttaxAlr,aySize] ;int, i;
for(i = 0; i<lcMaxArzaygize;i++)
myArray[i] = 0;
return 0;

]
T'he above program runs successfully, but there is no output because
sl.atentent is mention.

in the program no prinrfo

5.

U: C Programming ' ArraY and String W

ExeRcrsEs
main ()

{ int xl25l;
x[0] : 100t
xt24l: 400;
printf ("\n%d?d", *x, * (x+24) +* (x+0)) ;

l
main ()

{ char a[5* 2/2] = {'a', tb', 'Xt, 'Y' ,'z'} i
printf("%c\n",a[3]);

l
main ()

t int p[5] = {t,2,3,4,5,51
int *q : P'
printf ("tdtdtdu, *Pt6 , 2lql, P [1]) ;

]

main ()

{ static int num[]"01 = {1,0,0,0,0,0,0'0'0,0ii
inf i i.tLLv Lt Jf

for 1 i=9t j<10, ++j)

for(i:0;i<j;++i)
numIj] = numI j] +numIi] ;

for (i:0; i<10; i++;
printf ("%d\n"' numlil) ;

L
2.

J.
4.

5.

6.
.I
T.

exercNes

Convert a decimal number to its binary, hexadecimal and octal equivalents.

Accept'n'integers in an array. Accept an integer and check whether it is present in the array' If
it is, display its position.
Accept a matrix and check if it is symmetric'
Accept a string and display it in the following forms.

If string is ABCDE, the output should be

ABCDE BCDEA CDEAB DEABC EABCD ABCDE
Read a string and rewrite it in alphabetical order.
Accept a matrix and find the largest and smallest number from the matrix.

Shift all zeroes in the series of digits to the end of the series.

Example: Vp = 001054, O/P = 154ggg

Review questions

1.

2.
3.
4.
5.
6.
7.

What is an array?

How can an affay be initialized?
What are multidimensional arrays? How are they initialized?
What is the significance of the name of an array?
How can an affay be passed to a function? Give examples.
What are strings?
Explain the function.
i. strcpy ii. strcmp iii. strlen iv.

';jiiii
::illi

iliil
lii:::i

F

{2'
ua$t0tl

Pointers

6.1 INTRODUCTION

Pointers are an important part of C language, which provide a powerful and flexible way to

manipulate data. They should, however, be used correctly and carefully. Before we go into the details

of pointers, it is essential to know some concepts about the organization of memory and how the

variables are stored there.

6.2 MEMORY ORGANIZATION

The computer's main memory (RAM), consists of a large number of sequential storage locations,

each capable of storing one word of data (usually I byte) and identified by an unique address'

Typically, the addresses are numbered sequentially from 0 to some maximum tlepending upon the

memory size, i.e., they are positive integer values. When the system is running, the operating system,

uses some part of the memory. When we are running a program, the program code and progtam data

also occupy some of the system's memory. In this chapter, we will deal with the memory storage for

program data.

Mdn Memory

(r_>
I Code

Program { Il+
/ D?ta.\€

Max --+

Figure 6.1: System memory and addresses

When we use a variable in a program, the compiler sets aside (allocates) a memory location for that
variable. It associates the location's address (which is unique) with the variable name. Whenever the
program uses the variable, the compiler automatically translates the name into address.

Example

Consider the followinq statement:

int n = 100;

When this statement executes, the compiler,

i. reserves space in memory to hold an integer value.

ii. associates the name 'n' with this memory location.

iii. stores value 100 at this location.

Name-)

Figure 6.2: Storage of variable

Infigure 6.2,2 bytes of memory from location 1Cfl2 have been allotted to variable 'n' assumins
that an integer requires 2 bytes of storage.

Address-+t0oo 1001 1002 1003 1004

ug/f,ir c Programming . Pointers W

6.3 BASICS OF POINTERS

In order to manipulate the value stored at a particular memory location, a user is allowed to access

the address of the variable by using the '&' operator.

The Address operator (&)

When used as a prefix to a variable name, the '&' operator gives the address of that variable.

For the above example, & n will yield 1002.

Note: '&' can be used only with single variable or an'ay elements.

Output
The value of n is 20

The address ofn is 1002

Since addresses are integers, it is possible to assign an address to another variable, which will also

be stored in memory just like any other variable.

The assignment can be done by the = operator as shown.

Ptr_n - &n;

This statement assigns the address of 'n' to a variable ptr-n.

Name-)

Value-->

Address-+ t 00t

Figure 6.3

1003 1004 1005 1006

What is a Pointer?
A pointer is a variable that stores the memory address of another variable.

Since it is a variable, the pointer variable itself will be stored at some other memory location.

In the above example, ptr-n is a poin0er variable because it stores the address of another variable n
and hence it is called a poinier to n.

A pointer provides a method for accessing a variable indirectly.

5.4 APPLICATIONS OF POINTERS
i. Pointers can be used to simulate passing parameters by reference, i.e., the arguments can be

modified.

ii. They provide an alternale method to access array elements.

iii. They are used for passing atrays and strings to functions.

iv. They are more efficient in handling complex data structures like linked lists, trees, graphs etc.

v. One of the most important use of pointer is in dynamic memory allocation where memory is
allocated and released for a variable during run-time.

6.5

6.5. I

USING POINTERS

Declaring a Pointer
Since a pointer is a variable like any other, it has to be declared before it can be used.

Syntax: dat.a_type * pointer_namei

i. data-type is any C data type and it indicates the type of the variable that the pointer points to.

ii' The asterisk(*) is the indirection operator and it indicates that pointer_name is a pointer
variable and that it stores the address of a variable of the specified data type.

iii. pointer*name is a valid C identifier.

Examples

char *p_ch1,,*p_ch2; /* p_ch1 and p_ch2 are pointers to type char */
1nt num , *ptr-num ; /* num is an integer variabLe and ptr_num is a pointerto type integer */

6.5.2 Initializing Pointers
Until a pointer holds the address of a variable it is not useful. The address of a variable has to be

specifically put into a poin0er variable by using the address-of operator (&).

urC% C Prog."rrrg . Port"o ffiffi
A pointer can be initialized by a statement of the form

pointer : &variable;

Example: ptr-n = &n i /* assign address of n to ptr-n */

A pointer variable can also be initialized as , char *p = "ABCD";

The pointer p points to a string ABCD which is stored somewhere in memory.

6.5.3 De-referencing Pointer
After having declared and initialized pointers, we come to the main part, i.e., how to use them.

The - (indirection) operator is used along with pointer variables. It is also called the value-at
operator. When used with a pointer variable, it refers to the variable being pointed to. This is
de-referencing of pointers.

Syntax: *pointer*name

Thus, if ptr_n is a pointer, * ptr_n implies value at address stored in ptr-n or variable whose

address is in ptr_n.

De-referencing is the operation performed to access or manipulate data contained in the memory
location pointed to by a pointer.

Note: Any operation performed on the de-referenced pointer directly affects the value of the variable
it points to.

The following example illustrates these concepts.

intn=20,xi nx
@ l-sirE6bsel

1002 2000
ptr_n

I darha^6 |

1006
pEr n

| 1 nna Il..*3t
10 06

x
I tnl
tgj
2000

In the last statement, x = *ptr-n,
ptf_n.

.'. *(ptr-n) + value-at (ptr-n)

+ value-at (1002)

+20

ttre right hand side, i.e., *ptr-n gets the value stored at address in

i nr *nl-r n. /*t1n i nitializedtzvL_LLt t vtLL)

pointer * /

ptr_n = &ni /*stores address of n
in ptr-n*,/

y= *ptr_n; /*put value at ptr_n
ln x */

/* Illustrate basic pointer use */

Output
Direct access, value = 20

Indirect access, value = 20

Direct access, address = 1002
Indirect access, address = 1002
Direct modification, value = 30 30
Indirect modification, V&lue = 50 50

6.6 POI NTER EXPRESSION

Like other variables, pointer variables can be used in expressions.

For example: lf pl and p2 are properly decrared and initialized
statements are valid.

Y : *P1 * P2; same as (*p1) *(*p2)
sum=sum+*p1;
z ='7* - * p2 / *pI,. same as (7(-(*p2)))/(*p1)
*p2:*p2+1_0;

pointers, then the following

Note that there is a blank space between / and * in the item 3 above. The followins is wrong.
z=7*-*p2/*pI;

The symbol /* is considered as the beginning of a comment and therefore the statement fails.

o,fii C Programming o Pointers W
6.6. I VOID Pointer

Pointers defined to point to a specific data type cannot hold the address of any other type of
variable.

Example

The following code is invalid.
fl nal- *nl-r.v-L I
l-nE x;
ptr : &x;

C supports a general purpose pointer type called the void pointer. A void pointer does not have any
data type associated with it and can contain the address of any type of variable. They can be declared
as:

rzaid * naintar n.ma.l/vrrr LEr_rrqrLLs f

Example: vold * vjtr;
char chi
int- i.

float fvar;
v_ptr : echi
v-Ptr : &i,
v__ptr = &fvar;

/* doa l aro rr nf r :< rrni rj nni n1-ar * /

6.6.2 De-referencing Void Pointer
Pointers to void cannot be directly de-referenced like other pointer variables by using the *

()perator.

Before de-referencing, the pointer has to be typecast to the required data type.

Any pointer can be typecast to a pointer of another type by
(data_type *) pointer_name i

Example: char ch;
void *v_ptr : &ch;

In the above code, if the pointer v-ptr has to be used to refer to the character ch, it can be typecast
using
(char *) vJtr
Program: Illustrate the use of void pointers

/* valid * /
/* va.-id */
/* val.j.d */

W C Programming o,
uEtotr

Output
Value of n is 20 20

Value of m is 12.5 12.5

6.6.3 Pointer Arithmetic
When the * operator is used with a pointer, the number of bytes accessed from the memory will

depend upon the data type to which the pointer points.

For example, when de-referenced,

o { pointer to an int accesses 2 bytes of memory.

o { pointer to a char accesses 1 byte of memory.

o I pointer to a float accesses 4 bytes of memory.

o I pointer to a double accesses 8 bytes of memory.

t.

The C language allowsfive arithmetic operations to be performed on pointers

Increment ++

Decrement - -

Addition +

Subtraction -

Differencing

lncrement and decrement

When a pointer to some data type, (where data-type may be int, char, float, etc.) is incremented

by an integral value, i.e., the new value will be,

(current address in pointer) + i * sizeof(data-type)
Example: Incrementing a pointer to an int will cause its value to be incremented by 2 if an

input occupies 2 bytes.

Similarly, a pointer to a float will be incremented by 4 and not 1.

Example: int i : 20;
1nt *ptr = ai;

i ptr

@ lT600-l

1000 2458

nfrts""
nt r++r,-,. > | 10021

' 'r e+

205 8

The same concept applies for decrementing a pointer, i.e., if a pointer is decremented; it is
dbcreased by the size of the data item it points to.

Addition and subtraction
C allows integers to be added to or subtracted from pointers.

ll.

Example: int *ptr 1, n;
Ptrl = 6,ni

Ptrl : Ptrl+3;
This code will increment the content of ptrl by 6 since ptrl
are incrementing it hy 3 (i.e., 3 * sizeof (int)).

We cannot add two pointers, i.e., Pl+P2 is illegal.

Subtraction is pertormed in the same way.

iii. Differencing

The only other pointer arithmetic operation allowed is

points to an integer (2 bytes) and we

called differencing which is the

subtraction of two pointers.

The subtraction of the two pointers indicates how far apart they are. The result is of a type

called size_t, which is an unsigned integer. It gives the number of elements between two

pointers.

Example: int n, *p, *q;
P=&ni
^ - ^t),

ptlntr (usdu, q-p) ;

This code will yield a value of 2 even though numerically q and p differ by 4. This is because,

both point to the integer data type and the difference between them is 2 objects.

iv. Compariscn cf twc oointers

Pointer comparison is valid only between pointers that point to the same array. In such a case,

all relational operators can be used.

However the comparison operatofs == and != can be used to compare pointers of the same type,

void pointers and any other pointer, and any pointer and NULL.

Operations o

Operations on

Assignment

Indirection

Address of

lncrement

Decrement

Differencing

n pointers

pointers are

The value assigned should be an address.

Getting the value stored at a location.

The & operator used with a pointer gives its address.

Adding an integer to a pointer increments it by the bytes required for those many

data objects.

Subtracting an integer from a pointer reduces it by the specified number of
data-objects * sizeof (data-object)

Subtraction of two pointers.

Comparison : Equality and inequality can be used with all. The other relational operators can be
used only with pointers pointing to the same array.

Pointers cannot be multiplied or divided, i.e., expressions
or p,/3 are not allowed.

such as prlp, or pr*p,

6.7 PRECEDENCE OF & AND X OPERATORS
Both are unary operators and have precedence equal to other unary operators. They associate from

right to left.

Example

L i-nt n : 10, *ptri
ptr : &ni
prinlf ("%du, ++*plr) ;

Let us consider the expression ++ * ptr . There are two operators, ++ and *, both unary with an
associativity R -; L. Thus, the * operation is performed first. It will fetch the value being
pointed to by ptr, i.e., 10. Next, the ++ operator will increment it to l1 as illustrated below.

++* ptr

-j-+

r.e., +++ ptr = ++(*ptr) + ++ (* 1059) + ++ (10) = 11

int n : 10, *ptr ;
plr: &n;
printf ("?du, *++ptr) ;

In the expression *++ptr , ++ will be done first and then the value pointed to by the changed ptr
will be fetched and displayed.

ptr

@
2002

n

E
1058

E tlos8l *++
Ptr,

ptr Refers n

iroool - * @
to

2002 1060

+ * (++1058)

+ *(1060)

+ data_at_1060
a1 mptr ++ means first fetch the value pointed to and then increment ptr (since it is post increment),

ptr

@
2002

n

@
r 058

2.

ptr

1058 2002

i.e., *++ ptr =
* (++ptr)

u{l&, c Programming . Pointers ffi
5.8 POINTER TO POINTER

The concept o1'a pointcr can be lurthcr extended. Since, a pointer variable contains the address of
another variable, wc coulcl havc a variable, which will contain the address of the pointer variable.

Thus, we have a pointer to a pointet'.

int i : 10;
int *ptr;
1nt * *ptr_to_pLr :

ptr : ai;
^+e +^ h+e

-
r^+r.

VLI Lv VLr - uvu! t

i ptr p'l,r_to_ptr
|-inl ll nE-T] f?-nn?Ell'"1

1058 2065 L002
Here,
it-l
"Ptr | = value of i_i
*^Fr +^ ^+rlvu! Lv vL! I

&i I
Iptr | = Address of i*ptr to ptrl

The declaration
int *ptr;

implies that ptr is a pointer to an integer wheteas,
int **plr_to_ptr:

implies that ptlto-plr is 3 pcirtvr to a pointer.

The double ** indicate that ptr_to_ptr contains the address of a pointer variable. We can also have
a pointer to a pointer to a pointer. Conceptually, there is no limit on how much we can extend the

pointers. However in practice, we rarely use more than two levels of pointers, i.e., pointer to a pointer.

Program: /* Illustrates pointer to pointer */

.::: ::: ::: : ji i"t :ii'.t';

-i. . : ::I!1u::r:::::::::

Output

handling of strings,

The value of i is 10 10 l0 l0
The address ofi is 5498 5498

|tw
C Programming

6.9 POTNTERS TO CONSTANT OBJECTS
A pointer to a constant object can be declared as

COt-t.St- dat. trrno *nni nf 6r name.

Example: const int *ptr;
i.e., ptr is a pointer to a constant integer.

Consider the following code,
.i,rf .i

- 1n .lrrL r - Iv

const int *ptr;
ptr : ei;

i.e., ptr is a pointer to i. Such a declaration of ptr indicates that the contents pointed to by ptr cannot
be changed, i.e.,

*prr : 20; llis invalid

However, ptr itself can be changed, i.e.,

ptr ++ ; // is valid.

6. !0 CONSTANT POINTER
A constant pointer cannot be modified; however the data item to which it points can be modified.

Example: inr i : 10;
const int *ptr i /* declares a con-stant noi nf er ntrl */
Ptr : &i;
pt.r : 20; / val,id */
Ptr++i /* Inval-id */

A declaratiort such as

const int *ptr i will not allow any modification to be made to ptr nor the integer to which it
polnls to.

6.tl DYNAM IC M EMORY ALLOCATION
Dynanric memory allocation means aliocating memL)ry storage space at runtime.

So far. we have explicity allocated memory in the program source code by declaring variables and
arrays,

This method is called static memory allocation. The programmer has to specify how much amount
of memory is required,

For example, when we declare an zuray, we have to specify its size.

ln many cases, a user does not know how many elements are to be put.

In such a case, memory is either wasted if the size specified is very large or enough memory is not
allocated if the size specified is smaller than required.

,?& C Programming . Pointers W
In the Dynamic Allocation method, we can allocate and de-allocate memory whenever required.

C provides memory allocation and de-allocation functions.

5.1 l.l Allocating a Block of Memory

The malloc() function can be used to allocate memory. The prototype of malloc is

void * malloc(size-t num);

size*t is defined in stdlib.h as an unsigned int. The malloc() function allocates num bytes of
storage and returns a pointer to the first byte. It returns NULL if allocation is unsuccessful or if num

is 0.

Example: To allocate memory to store n integers

ih+ * nfr.lrrL I1 u! | / *poinLer to t-he block * /
ptr = (int *) malloc(n * sLzeof (int));

In this example, explicit type casting is required because by default rnalloc() returns a void pointer.

- Figure 6.4: Allocated memory

The calloc() function is also similar but it allocates a group of objects andinitializes the bytes to 0.

Prototype: voj-d * calloc (size-t num, size-t size);
num is the number ofobjects to allocate and size is the size(in bytes) ofeach object.

Example: int *ptr;
ptr : (int*)caIloc(n,sizeof (int)) ;

6,1 1.2 Freeing or
The free() function is used

realloc().

When memory is allocated it
program.

De-allocating Memory

to release the memory that was allocated by malloc() or calloc() ot'

is taken from the dynamic memory pool (heap) that is av:rilable to the

<-- 2n trytes
-------n>

C Programming

- After the program finishes using a particular block of dynamically allocated memory, it should be
freed to make memory available for future use.

Prototype: void free(void *ptr);
The free() function releases the memory pointed to by ptr.

Program: /* Illustrate dynamic allocation and de-allocation */

;iti$.if,tffit'."$*fiiiffiffirr-'=iffi,"
t""- ii +$ffJffiffi ffi

* * -'' '

r,',, .,ptr.,;.,,.(}nt']' *,, rma}.t'oct'n14i'zqb.f''t'.ihf.lj.i;........'.,.i.'...';u+'*ilffil
illlilffi ;: ;##ffi #,,;. i .l';,: - ;ti.t'.,:;11'',, i':::,:. t,'::": :i::';:j,'.,il:'':'::' r.:ir :-.i'

,

it, r i *lillti i t rffi lL#il' --i*ffi ; -rf1 1+

;'uf*$*rff*#***ffi-
ln the abo'e progranl. we have allocated and de-allocated memory for a 1D array.
we can also apply the same concepts for alrocating memory for a 2D a*ay.

6. | 1.3 Altering the Bf ock Size
Tlie realloc() function changes the size of a block of memory that was previously allocated with

malloc() or calloc().

Pratotype: voj-d * realloc(void *ptr, size_t saze);
ptr points to the original block, size is the required new size in bytes.

o If ptr is NULL, realloc acts like rnalloc and returns a pointer to it.
t If argument size is 0, the memory that ptr points to is freed and f-unction returns NULL.
t lf sufficient space exists to expand the memory block, a<iditionat memory is allocated and

function returns ptr.

uri/r& c Progr"^ring . Poinr"r, W
. If sufficient space does not exist to expand the current block, a new block of size bytes is

allocated, existing data copied into it, old block is freed and a pointer to the new block is
returned.

. If memory is insufficient for reallocation (either for expanding or allocating of new one), the

function returns NULL and the old biock remains unchanged.

The following program illustrates reallocation.

Output
How many numbers : 3

Enter the numbers :

10

5
25

How many new numberc? :2

Enter the remaining numbers

50

6
The entire list is :

10525506

W c P'og'"*'i'g t Poin'""
ur?",

6.12 POINTERS AND ARRAYS
Pointers and arrays arc very closely related. As seen before, an affay name without the subscript is

a pointer to the first element in the array. The same holds for arays of two or more dimensions.

Examples

i. i-nt plroJ;
Here, p and &p[0] are identical.

ii. char at10li10l;
Here. a and &a[0] [0] are idenrical.

Pointers are used very often to access arrays because pointer arithmetic is often a faster process
than array indexing, especially when the array elements have to be accessed sequentially.

The reason for this is that, the C compiler internally converts a subscripted no[ation x[i] to the form
x(x+i).

Here, x is the base address of the array.

(*x will give the value of the Oth element. Similarly, *(x+i) gives the value of the ith element.
Thus.

xlil + *(x+i)

-+ * (i+x)

* i[x]
The following programs proves this,

1. /* Accessing array elements in different ways */

Output
address =
address =
address =
address =
address =

6800
6802
6804
6806
6808

elements =
elements =
elements =
elements =
elements =

10 10

20 20
30 30
40 40
50 50

10 10

20 20
30 30
40 40
50 50

Similarly, a 2D anay can also be accessed using the pointer notation instead of the subscripted one'

xtil Ul + *(x til + j)

+ *(*(x+i)+j)

This will refer to the element xtiltil.xtil is the address of the is t-D array.

The following program illustrates passing of an array to a function and the use of pointers'

The expression x[i] is treated by the compiler as * (x+i)'

The for loop in the above function could also be written as follows:

for (i=0i i<n; i++)
{ printf ("%d" , *x) i

x++i)

Output
How many numbers :

10

20

30

You entered

10 20 30

5.l3 POINTERS AND CHARACTER STRING
Strings and pointers are very closely related, since a string is an array, the name of the string is a

constant pointer to the string

ln previous chapter, we have seen some functions on strinss.

Examples

l. Find the length of the string.

write a program to accept five strings from user and display all
those strings in descending order.

i;;tr:;; iliriii

;littiril.l
l8tirditilj

':FF.ili

ffift iE.lifiiiliffi
*."ntt-;'.fi+fi

*
rl'i-t*$fir*$f'l}-

ffi

ur6(;, c p,og,"*ri;g . poin,",, W

.,.r,'i.*itn:u r..r l oa.;[[t

5.1 4 ARRAY OF POINTERS

Just like we can have an array of integer, float or char, we can also have an anay of pointer

variables.

As point,er variables contain address, an array of pointers is a collection of addresses. These

elements are stored in memory just like elements of any other array. All rules also apply to this array.

Syntax: data-type * arraynameIsize] i

Example: int *p [5] ;

p is an array of 5 integer pointers.

The following program illustrates their use.

/* Array of pointers */

Output
address = 5804 value = 1

address = 5806 value = 2

address = 5808 value = 3

ptr

2004 2006 2008

Figure 6.5: Array of pointers

Initializing Array of pointers

An array of pointers can be initialized during declaration as illustrated by the

Examples

1. Array of pointers to integers.
static int atl : {0,1,,2,3,4};
static int *p[] : {a, a+!,a+2,d*3,ar4};
int **ptr = O.

These three lines of code can be pictorially represented as shown.

following examples:

9800 9802 9804 9806 s808

PI

2410 2412 2414 2416 2418

(a) Array of pointers

Figure 6.6

2. Array of pointers to strings.
char * message [5] : { t'Pointerstt, trarett, rrinteresting,,, ,,butr, ,,need,,r ,,pracLicer, };for(i:0; i<6; i++)

printf (utsn, message til) ;

The array of pointers is represented as illustrated below.

ptr

, F;iiiEF Hli

klgjww,'
6508

Pointers to pointer(b)

url2" " "'ont"tt''g ' 'o''"'" ffi
message [0]

message [1]

message [2]

message [3]

message [4]

message [5]

(a)

Figure 6.7: Array of pointers to strings

These strings are stored in memory consecutively.

This array can be passed to a function as shown below:

print_words (message, 6) i /*CaII to function */
void print_words (char *p [] , int n)
{ j-nt i;

for11 : 9, i<n;1++)
printf(u?su,pIi]);

]

SOLVED PROGRAMS
1. Using pointers accept two strings and store concatenation of

these two strings without using library functions.

(b)

W C Programming (),
ut$tn||

,, What will be the output? Give explanation.
i. naino

{ inta=8;
int *P = tai
inti=a,/*p;
printf ('ttd,,, i) ;

I
Ans

Output is I

Because, value of a = 8 andp points to a so *p = 8. Therefore 8/8 = 1.

ii. int main(void)
t
tnt num, t;
num = 5;

fot (i=0; i<20; i++)
{

AddOne (&ntn) ;
printf ("Final value is !td,,, num),
zatutn 01

]
void AddOne (int*myVar)
{

(*myVar)**;
T

Ans

In the statement Addone (&num) display the one error: - Function Addone should have a
prototype, because the function prototype is not specify in the program. Also this program
display one warning: Function should return a value, because main 0 function is specify with
int return data type.

iii. maino
{ statLc Lnt a[]= (70,20,30];

statie j,nt * mass [] = ta,a]7,a+2];
printf ("tdtdtdil, sizeot (a), eizeot(mees), sizaof (meee lTl)) ;

j
Ans

Output: 6 6 2

1. Here a is an array of 3 integers....sizeof(a) = 6 bytes (Assuming 2 bytes for int)
2. mess is an array of 3 pointers. Each pointer occupies 2 bytes

.'. sizeof (mess) = g

3. mess[1] is the second pointer in the array. Since it stores a single address its size = 2
bytes.

or{l;n c prosru^.ing . poirt"r"
W

v. maino
{ char *P = rt2$gsltrl

PzLntf (t'tct',*p**) I
printf (n\tSe,', *p1 ,

Ans

Output: a b

Consider the expression *p++. There are two unary
associativity. Hence p++ will be done first. But since
be used to evaluate * and then p will increment.

p currently points to the first character of the string,
the next character, i.e., b. Hence the second printf will

vr. nain o
tchar *P ="alqc";
printf ("*c. . . ", ++* (++p)) ;
Printf("*c", ***P);

I

operators * and ++ which have a R-+L
it is post increment, the old value of p will

i.e., a. After incrementing, it will point to
yield b.

Output: m...q

p points to beginning of the string, i.e., ++p will increment p to point to next character, i.e., I .p
now contains address 1001.

Value at 1@1 = l; next ++ operator will increment the value of l.

This value is incremented giving m.

In the second printf, p is incremented to point to the next character, i.e., Q.

.'. q is displayed.

vii. votd natn o
t

tnt a = 70i

votd *p = Ezi

tnt *pf,.z = p;
cltccr O ;
prtntf ("Sutt, *trttz) I
gotchO;

l

(),W " "ton'utt* ' "o''"" u,r,no

Ans

This program display one enor and one warning.

Error: Cannot convert void * to int *. That means an assignment, initialization or expression
requires the specified type conversion to be performed, but the conversion is not legal.

Warning: p is assigned a value that is never used. That means the variable appeared in an
assignment, but is never used anywhere else in the function just ending.

viii. Votd natno
{

j.nt at3lt31l31 = t7, 2, 3, 4, 5, 6];
printf (t'$u *u *u td", E, *a, **a, ***s);

]
Ans

This program displays the following output:

65472,65472,65472, 1

In this program, we create an afiay namely a with multidimension and assign only rows value of
one dimension. At the print time we are using Von as a control string which is basically used to
display the address of memory value. So in this program display the address of first, second and
third index of array.

ix. votd matno
t

static int b[6] = {70, 201 301;
tnt t, *ki
k=tbt3l-3;
for(i=0,ji=5;t++)
{

. prl,ntt (,,*dnt *k);
k**;

,
,

Ans

b is integer array which is defined using static storage class so all elements with values zero will
be initialized. 3 elements value is given. Others are zero so array b will look like

Subscript btol b[1] b[2] bl3l bt4l bl5l

Value 10 20 30 0 0 0

Assumed address 1 001 1 003 1 005 1007 1 009 101 1

k=&b[3] - 3;

(l::- C Programming ' Pointers ffi
k=1007-3*sizeof(int) = 1007 - 6 =1001(pointer arithmetic, whatever number we add or subtract

we have to multiply size of pointer)

so k will point to first element of an array.

i=0 i<=5 printf ("%d",.k) k++ l++

0 0 < 5 (true)

*k is value at k
Value at(1001)

10 will be printed

k=k+1

k=1 001 + 1 (sizeof(int))

=1 001 +2=1 003

1

1 1<5

*k is value at k

Value at(1003)
20 will be prinled

k=k+1

k=1 003+1 (sizeof (int))

=1 003+2=1 005

2

z 2<5

*k is value at k

Value at(1005)

30 will be printed

k=k+1

k=1 005+ 1 (sizeof (int))

=1 005+2=1 007

3

3 3<5

.k is value at k

Value at(1007)

0 will be printed

k=k+1

k=1 007+ 1 (sizeof (inl))

=1 007+2=1 009

4

4 4<5
*k is value at k
Value at(1009)

0 will be printed

k=k+1

k= 1 009+1 (sizeof (int))

=1 009+2=1 01 1

E

*k is value at k

Value at(101 1)

0 will be printed

k=k+1

k=1 01 1 +1 (sizeof(int))

=1 001 1 +2=1 01 3

6

b
6 < 5 (false)

6 = 5 (false)
Loop will end

Output: 102030000

x. votd malno
{
chaz *p = "PRAG8)A}]";
pzintf ('t86\t", *ft + il);
P-=7;
Printf,("$c\t", *@ + +t),
)

Ans

p will point to first letter of string PROGRAM

(++p) will be p = p+1

= 1000+1t(sizeof(char))

= 1000+1*(1) = 1001

Subscript pl0l pll l ptzl ptsl pt4I ptsl p[6] plTl

String characters P R o lJ R A M \0

Assumed address 1 000 1 001 1 002 1 003 1 004 1 005 1 006 1 007

C Programming

'r'(1001) will be = valLre at(1001) = R. so R will be printed. After that tab will be printed, cursormoves by 4 spaces.

P-= I

p=p- I

p = 1001 - l*(sizeof(char))

P = 1000
*(1000) will be value ar (1000) = p so p will be printed.
Output: =R____p
(_) means blank spaces.

xi. void main()
{
char *SIl = {,,Dhatrna,r, ,rffiOrtonn, ,,g3'meng,t,

"j.fu,, I;
char **p;

P=a;
ptintf (,,ggn, l+ *p) ;
Pzintf (t'ta',, *p ++) ;
Prj,ntf ("ta,t, +* *p) ;
]

Ans

5 = {"Dharma", "Norton", "simens',, "ibm" };
D n d r m \0 N o r t o n \0 \ I m E n 5 \U i b m \0
1

0
0

0

1

0
0

1

1

0

z

1

0
0

I

0
0

4

'l

0
0

5

1

0
0

1

0
0

'l

0
0
d

'|

0
0
q

1

0

1

0

1

0
1

1

I

0

1

2

1

0
4
I

3

1

0

1

4

1

0

1

q

1

0

1

1

0
'l

1

0
1

R

1

0

1

1

0

z

0

1

0

2
I

I

0

z
2

1

0

2

1

0

z
4

P=s
p will contain starting address of s. for example,
s = 1000

p = 1000 therefore p will point to string ,,Dharma,,

ptintf ("Vos", i**p)t
++*p

= ++(value nt p)

= ++(1000)

= 1000 + 1 (sizeof lchar)

=1001 +t =1001
Therefbre this printf will print string ,,harma',.

Pfintf ("Vos", +p ++);

,(,*; C Programming . Pointers ffi
*p++

= value at p ++

= 1001++

= 1001+1(sizeof(datatype))// here data type means p is a pointer to pointer. So size 6 will be

considered.

= 100l+6 = 1007

The statement in printf is post increment so it will first print the value pointed by p then it will
increment the value. So the string first pointed by p will be 'hatma' so it will be printed then p

will be incremented.

Therefore "harma" will be printed.

Now p is pointing to character 'N'.

printf ("7os", ++ *p);

++'op

= ++(value at p)

= ++(1007)

= I 007+1*(size of(char))

= 1007+1*1 = 1008

- p will be pointed to character 'O'

So string 'orton' will be printed.

Output will be harma

harma

orton

ExeRcrsEs
A. Predict the output

marn ()

I
t

nl-r:r *n.
vl

'i n1- *i .
L,

fl nef *f.
Ll

darrl-r'l o *r'1.
9,

nr i nl- € / ll \ n n\ \rr \?

n*in+€/lt\n iyr arrL! \ \rr a

nr i nt- f / lt \ rr f

nrinf f /tr\r' A\rr rl

]

tL1 ", c I c+l) ;

?u", i, i+1);
tur', f, f+L);
tu", d d+1);

tr.r c+1
tu i-+1

tu f+l
ttt cl+l

i ' r:;
,)fir3t lt1:inq (.k

--- ulsl0ll

,i.t'

t'...rr,,-+-aril.

-L -
*-r r'-,\ '| 'Y''

rili.! 1 ." a,1;

^,.-t;r :r. f 1-f. ; \'.'| q'i za,rf /r-r+rn\ \ .1,1

I .:it.,.,.i, !,11--;- : ii-l-,-r-,

'l r-l i

-. l. i '
| -. ! i-ir)

t,r'lr: L ili I 1;{.);ii1r:)t:'f l:i/ltli ls lrs ilse?

, ril i.;\r,. ii ih,;: :ler,:larll roit (rf * poiritcf variilble cliffer from an ordinary one?

lrl,,lrr"l :i j,jiri;l:r:, i,.t'(lL) ajld irilij:ec{ion opetator (*).
,;"'ir-il i:i-r, il-.t: iilil:rr:rt1 Jilf:fe.tions that Can be performed On pOinters?

!:.'., lj;r j :r 1',)]t1l;:i ,i.t frtii;ltef br: declared?

f;3e"r'*wtfm$'$s a$ked in Previous Exams
:::- r ,- ilrljir\\i;r1';:rirgr.afils? Gi.*e,,theiisxplailatjdfiN.i,:!,|t71,,1i

()"
ur$t0fl

C I:'ro1lritttntitt:t
--!i*i#;i.r , -,:1 ;#,.riiri,iia.

6

&u

(1 r')

&c1 rl
:. a.

i. 4, 3.

'lrd I :t,*L! r

{1,) l

,,!**rp;),,,;

ftnci store concricnation of ,t"r* ,rr,, ,,,,ttn'r{i;ri"::;;;
fffct" i'lf ;i * 51,4

ii:::. ::?{J9:-ft-tl}

.:u,,r, r:l

.. $J ! v'J ito, 20,, 3o);

''''1:'<]

('it:$Uti::i

* frDh'arnta1.i

F';, si;
F,finuf,(ji sil
Printf {ttggtr
prlntt.i'i sii iii{+;t'

t:::: i

,i., ur
iti!:ta:,,
'11):::;:

1.t.,

,,,1.,t:,1,"

i*#,
lE
:):::?,1::t:.

'ilt'&,tl

.t:1:,:.,,,r,t

L?'
urSt0tl

Function

T.I INTRODUCTION
Functions are the building blocks of C and are central to C programming and to the philosophy of

C program design.

main$ is the function where execution begins. The other functions are executed when they are

called directly or indirectly by main.

It is rnandatory to have a single main0 function in every program. In the following sections, we

shall be studying more about main and other functions.

7.2 WHAT IS A FUNCTION?
The program development cycle includes problem analysis, problem definition, design and coding.

The code is a set of instructions in a logical sequence, which performs the specified task. 'Real world'

applications programs arelarge and complex. Therefore it is more logical and convenient to break-up

the task into smaller, compact and more manageable modules, called functions.

Definition

A function is a named, independent or self-contained block of statements that perfornrs a specific,

well defined task and may return a value to the calling program.

7o1 (/.
utSt0ll

W c progr"r^ing o Functio, ---rru,

A function is named. Each function is identified by an unique name and is invoked (or called)
using this name.

A function is independent. It can per{orm the task on its own. It can contain its own variables
and constants to be used only within the function.

It performs a specific task. A function is given a discrete job to perform as a palt of the overall
program. The task has to be well defined.

It can return a value to the calling program. The function can perform execution and optionally
returns information to the calling program.

7.3 FUNCTIONS AND STRUCTURED
PROGRAMMING

Functions and structured programming are closely related. In structured programming, independent
section of program code performs program tasks.

Advantages of Functions

1. Modular or structured programming can be done by the use of functions.

2. By following the top-down approach, the main function can be kept very small and all the tasks
can be designated to various functions.

Troubleshooting and debugging becomes easier in structured programs.

Individual functions can be easily built and tested.

Program development becomes very easy.

It is easier to understand the program logic.

Multiple functions can be developed and tested simultaneously thereby reducing the program
development cycle time.

A repetitive task can be put into a function that can be called whenever required. This reduces
the size of the program.

Frequently used functions can be put together in a customized library.

A function can call other functions. It may even call itself. This technique called recursion is
very useful in solving complex problems and in writing a compact code.

7,4 HOW A FUNCTION vvORKS?
A C program does not execute the statements in a function until the function is invoked or called.

When the function is called, control passes to the function and returns back to the calling part after the
execution of function is over.

3.

4.

5.

6.

7.

8.

9.

10.

The calling program can send information to the functions in the form of argument. An argument

stores da[a needed by the function to perform its task. Functions can send back information to the

program in the form of a return value.

Function calls and returns can be illustrated by the following example:

main() calls funcl () and func2(); funcl () calls func3()

Figure 7.1

Note: A function can be called as many times as needed and can be written and called in any order.

7.5 LIBRARY AND USER DEFINED FUNCTIONS
In a C program, functions are of wo types:

i. Pre-defined functions or library functions
ii. User defined functions

Ftgure 7.2

The pre-defined or library functions are pre-written, compiled and placed in libraries. They come

along with the compiler.
User defined functions are written by the user and the user has the freedom to choose the name,

arguments (number and type) and return data type of the function.
One of the greatest feature of C is that there is no conceptual difference between the user defined

functions and library functions. A user can write functions, collect them and put them into a library,
which can be used by anyone.

In this chapter, we shall be mainly studying user defined functions.

Standard Library Functions
Some commonly used library functions are given in the table below. We shall be using some of

them in the later chapters. To use a library function in a program, its corresponding header file must be
included in the program.

i. stdio.h

il. math.h

iii. conio.h

,Eiihatioh.,1 Ftiipose.liitill:ri ,i'iif1.L':, r''
1,'.,',

getchar int getchar (void) gets a character from stdin
putchar i nf nrrrr-h:r / i nj- c \gl \!.rU U/ writes a character to stdout
gets ch:r *aaj-c lrhzr gets a string from stdio
puts i h+ ^"f ^ | ^^^^, ^1rilL purs (consc cnar x

) outputs a string to stdout

printf
i nf n-i nf € /^^h-F nh:r* f nrm:t-!rru tJr rrrL! \uvtl>L vrrar !v!lLLoLf
larn I \.Lsry/ ,..) | |

writes a character to stdout

scanf
int scanf(const char *
format., Iaddress,]) ; scans and formats an input from stdin

sprintf
'i nr snrintf /ehar* hrrffar nhrr *
forrnat, Iargumenc , ...,]\; writes formatted output to a string

sscanf
int sscanf(const char * buffer, const
char * format ,

Iaddress, ...1);
scans and formats input from a string

fflush int fflush(file *); flilshes a stream

.'Funclifiiti :1',;1:;,;:;
;:i,. ;.;,::: : .,.r, ..Pf'ot0ty,pe Ft'

abs ini- :l^rc/int v'l Returns the absolute value of x
cos rinrr'l^r'l a

^Ac
/rlnrrl.rl a .,tuvo \uvuurc I Returns cosine of x (x is in radians)

exp double exp(double x) Calculates e"
floor doubfe fLoor (double x) Returns the largest integer < = x
log r{arth'l o Iaa/Anll-'l^ "trv\, \uvuptg ^,f Fleturns natural loo of x
pow double pow(doubfe x, double y) Calculates xY

stn double sin (double x) Calculates sine of x
sqrt double sqrt (double x) Calculates square root of x

rHiiWll0ni-l
'.'lil.1,'..ff.btro..tvHG,,,r,.i

iri

clrscr void clrscr (void) Clears the texl mode window
clreof trni rl n l ranf /rrni nvvr \ vvrq Clears to end of line in text window
getch i h* ^^t^L /.-^l l\rrru \jsLurr \ vuIu,l Gets a character from console. No echoing
getche i nf aai- nl-ra / rrn i A \wv!v, Same as getch but echoes to screen. No bufferino is done
kbhit inf khhit- 1\/^i.l\ Returns an integer corresponding to a keystroke
putch int put.ch (int ch) Outputs a character to the text window on screen

u,6#i C Programming . Function W

iiFunction, n*r.Pose,

atof double atof(const char *s) Converts a string to float

atoi rinrr'hl o :1- ni lconqj- char *q) Converts a string to int

atol double atol(const char *s) Converts a string to long

random int random(int num) Returns an integer between 0 and (num-1)

randomize void randomize (void) Initialize the random number generator with a
random value

system i ni. c\7et6m /.^h<l- nh:r * nnmm:nd\y u uvrrL \ vvare Used to execute an MS-DOS command

iv. stdlib.h

7.5 FUNCTION DECLARATION AND DEFINITION
Just as vadables used within a program have to be declared, so as the flnctions. The function

declaration is called the function prototype and it provides the following information to the compiler:

o The name of the f'unction

e The return data type (optional, default is integer)

o The number and type of arguments that will be passed to the function

(The argument name need not be specified).

A prototype should always end with a semicolon.

Syntax: return-type function-name (type ar97, type arg2 . . .) ;

Examples

f. int sum(int a, int b, int c);
2. void display (void) ;

? dnrr'l-rl o qarr:ra lrlnrrl-r'l c nrrml'rarJv \vvsvrv ^.*.,.---, ;

nA inl- crrm/ini int- inl- \.!rru !stt!\!rrut !rret LLLet f

Function Definition
The function definition is the actual function. The definition contains the code that will be

executed. The first line of the definition called the function header should be identical to the function
prototype with the exception of the semicolon. The argument names have to be specified here.

7.7 vvRITING A FUNCTION
Each function definition has the followine form:

ratrrrh l. irha frlndf i
^h

haha r-^a^-ot-or I i ct \ar_ufyvrfuu/

{
declarations;
cl- ri-amanl- c.

I
)

The first line of every function is the function header, which has three components.
i' The function return type: This specifies the data type that the function returns to the calling

program. If the function does not retum a value, the return data type of void is used.

Examples: int funcl- (....) ,/* Returns an l_nteger value ./float func2 (. ...) /* Returns a type float *,/
void func3 (.. ..) ,/* Returns nothing */

ii' The function name: The function name can be any valid C identifier, The function name has to
be unique and it should be preferably named so as io reflect the purpose of the function.

iii' The paramete^r list: Function parameters are the means of communication between the calling
and the called functions. They can be classified as:

o Formal parameters (or parameters), which are given in the function header.
o Actual parameters (or arguments) which are specified in the function call.

Each function has to declare the type a1d nlme of the parameter. Commas separate multiple
parameters. For each argument passed in the function call there has to be corresponding parameter in
the parameter list in the function headers with the same data type and the order in which arsuments aresent. --- -

Examples

l. main ()

7.7., The function header

{ int x,y, result;
result = sum(x,y) ;)
int sum(int a, int b)
{return a + b};
In this example, sum is a function acgeptin-g two integers and returning an integer. x and y are
the actual parameters. a and b are the formal or dummy parameters.

2. float area(float radius)
area is a function returning a float and accepts one float argument.

3. int max(int a, int b, int c)
max is a function accepting three integers and returning an integer.

4. int random(void)

This function returns an integer but takes no arguments.

7.7.2 The function body
The function body is enclosed in braces and immediately follows the function header. It consists

Declarations: You can declare and initialize variables within a function. These are called local
variables, which means that they can be used only within that function.

/* function calf */]
,/* function definition */

of,

l.

"r(#;
C Programming . Function W

,i,iri,',,',,,,,iliFt$lotyna-,] ..:'.:

atof double atof(const char *s) Converts a string to float

atoi dnrrhl a atni t/cnnql. ch:r *q) Converts a string to int

atol double atol(const char *s) Converts a string to long

random int random(int num) Returns an integer between 0 and (num-1)

ranoomtze void randomize (void) lnitialize the random number qenerator with a
random value

system i nf <\7etah f
^^nql-

char * cnmm:nrJ ly r uerrL \ vvrre vvlurrsrrv / Used to execute an MS-DOS command

iv. stdlib.h

7.6 FUNCTION DECLARATION AND DEFINITION
Just as variables used within a program have to be declared, so as the functions. The function

declaration is called the function prototype and it provides the following information to the compiler:

o The name of the function

o The return data type (optional, default is integer)

o The number and type of arguments that will be passed to the function

(The argument name need not be specified).

A prototype should always end with a semicolon

Syntax: return-type funct ion-name (type argl , type arg2 . . .) ;

Examples

l. int sum(int a, int b, rnt c);
Z. void display (void) ;

? rlnrrl.rl a carr:ra 1r{nrrhl a nrrml.rorJ..-....--- t;

f]P ini crrm/ini- int- inf \.qrrr\frrut +lrut LLLvt,

Function Definition
The function definition is the actual function. The definition contains the code that will be

executed. The first line of the definition called the function header should be identical to the function
prototype with the exception of the semicolon. The argument names have to be specified here.

7.7 \^/RITING A FUNCTION
Each function definition has the followine tbrm:

raf lrrn f rrno f rrnct r
^n

n:ma r-oao-oa-oa I i et \
-1v

e I

II
declarations i
statements;

)

7.7.1 The function header
The first line of every function is the function header, which has three components.

i. The function return type: This specifies the data type that the function returns to the calling
program. If the function does not return a value, the retum data type of void is used.

Examples: int funcL (....) ,/* Returns an int.eger value */
float. func2 (. . . .) /* Returns a type fj_oat */
void func3 (. . . .) ,/* Ret.urns nothing *,/

ii. The function name: The function name can be any valid C identifier. The function name has to
be unique and it should be preferably named so as to reflect the purpose of the function.

iii. The parameter list: Function parameters are the means of communication between the calling
and the called functions. They can be classified as:

o Formal parameters (or parameters), which are given in the function header.
r Actual parameters (or arguments) which are specified in the function call.

Each function has to declare the type and name of the parameter. Commas separate multiple
parameters. For each argument passed in the function call there has to be corresponding parametei in
the parameter list in the function headers with the same data type and the order inwhich arguments are
sent.

Examples

1. main ()

{ int xry, result;
result : sum(x, y) ;]
int sum(int a, int b)
{return a + b};
In this example, sum is a function accepting two integers and returning an integer. x and y are
the actual parameters. a and b are the formal or dummy parameters.

2. ftoat area(float radius)
area is a function retuming a float and accepts one float argument.

3. int max(int a, int b, int c)
max is a function accepting three integers and returning an integer.

4. int random(void)

This function returns an integer but takes no arguments.

7.7.2 The function body
The function body is enclosed in braces and immediately follows the function header. It consists

Declarations: You can declare and initialize variables within a function. These are called local
variables, which means that they can be used only within that function.

,/ * f unction call_ */ l
/* function definition *,/

of'

i.

ll.

uI.

ur?& C Programming o Functio, W
Example: ftoat area(ffoat radius)

{ float resufti

,....'):":"::.1.i' Ll',"; .,

Function statements: These statements perform the specified task. There is no limitation on the

statements that can be included within a function.

However, another function cannot be defined in a user-defined function.

The return statement: The keyword return is used to terminate the execution of the function
and return program control to the calling program.

Syntax: return;
Example: if (n<0)

return;
It is also used to return a value to the calling program. (A function can accept any number of
values but can send back only one).

Syntax: return (expression) ;

OR

return expression;

Example: return (0) i
return (a+b) ;
return ++i;

A return statement at the end is optional for functions not returning a value. There may be
multiple return statements within a function but only the first retum statement encountered
during control flow will be executed.

Example: int max(int a, int b)
{ 1f (a>b)

reEurn a;
^t ^^et De

return bi)

7.8 CALLING A FUNCTION
A function can be called by two ways:

i. Any function can be called by simply using its name and arguments alone in a statement as

shown. If the function has a retum value, it is discarded.

Example: disp-message O ;
display_value (x) ;

ii. The second method can be used only with functions that retum a value. Since they retum a

value, they can be used anywhere. A C expression can be used in a printf statement, on the right
side of an assignment operator, etc.

ffi C Programming Function (.k

Here are some examples.

i. printf ("Square of ?d is % d,,,x, square (x));
ii. area : calculate_area(radius) ;
iii. Sum_of_a1l : sum(a,b) + sum(c,d);
iv. if(sum(a,b)>100)

{

/* statements */ j

v. maximum = max (a, b) ;
Vi. max_of_three = max (c, max (a, b)) ;

7.9

7.9.1

TYPES OF FUNCTIONS

Functions with No Arguments and
Return Values

These functions do not take any information from the calling
nor do they pass back any value. Such functions are commonly
display messages.

Examples

1. #inglude<stdlo . h>
maln ()

{ vold greet(void) i /* function prototype */
greet O; /* functlon cal_1 *,/

]
void greet(void) /* functlon defj_niLion x/
{ printf("\n He1lo and welcome to C"};
#lnclude<stdi-o. h>
main ()

{lntn;
vold error_msg (void) ;
printf (rrEnter the value of n : ") i
scanf (t'?alu, &n) i
1f (n<0)

{ error_msg O ;
exit O ;

l

)

voj-d error_msg (void)
I nrirlFIlrE!'r-n-|r y!rrrL! I Lrtur : Negatlve valuett) ;
)

No

function
used to

7 .9.2 Functions with and No Return Value

any value back to the calling program. It

the arguments may be displayed from the function

7 .9.3 Function accepting Arguments and Returning a Value
Such a function accepts information and also returns back a value to the calling program. Thus,

there is a two way communication between the two.

Example

We shall modify the above program such that the function area now returns the calculated value
back to main.

/* Illustrate function returning a value */

ffi C Programming Function O"||tttnr

7. IO METHODS OF PASSING ARGUMENTS
There are two mechanisms to pass arguments to afunction.

i. Call by value

ii. Call by reference

In C all function arguments are passed by value. C language does not support call by reference.

7. | 0. I Call by value
o ln this method, the value of the actual parameters gets copied into the corresponding formal

parameters.

t Any changes made to the formal parameters will not affect the actual parameters.

In order to illustrate call by value, let us write afunction which interchange two numbers.

Program: Interchanging two numbers

Output
Before interchange a=10, b=20
In function x=20, y=10
After interchange a=10, b=20

In this program, the values of the actual paramet€rs, a and b get copied into two different variables
x and y (formal parameters). These formal variables exist only in the function swap. Hence, any
changes made to these formal parameters will not be made to the actual parameters.

main swap

Flgure 7.3

b

120 I

3000

a

| 10 |

1 050

7.10.2 Call by reference

In this methocl of plssing arguments, the called function has access to the original argument, not

the local copy. Languages like Pascal and Fortran allow this method.

Although C language allows passing of arguments only by value, the call by reference method can

be simulated by the use of addresses ancl pointers. This allows the function to directly access the

original variables and modify their values.

We will rewrite the program to interchange two numbers but in a slightly different way.

iti;+'*tr;-rii

In call by value method, the function cannot access the original variables. It can only access

duplicate or copied variables. In order to make changes to the original variables, the function must get

access to the actual variables and not their copies. This is possible if we send the address of the

variable to the function rather than its value. Since the address of any variable is unique, the function

will access the original variable.

The addresses of a and b are obtained using the & operator (address of operator). The addresses al'e

stored in 2 special variables x and y which are declared as 'pointer' variables and they storei the

addresses of a and b respectively. *x and *y are the values in a and b respectively. Hence' 1n1' changes

made to *x and 'ty will change a and b as well.

maln swap

ME r@m
1 050 3000 21 00 4000

Before swapping a=10 b=20

After swapping a=20 b=10

FUNCTIONS \ryITH VARIABLE ARGUMENTS
It is possible to declare functions with variable numbers of arguments. such functions are called"Variable" functions. Some standard library functions can accept a variable list of arguments (such asprintfl.
A function is also defined as variable using an ellipsis ('...') in the argument list. The function iscalled by passing fixed arguments followed byihe adaiionai variable arguirents.
Example: int. funcl (1nt x, ...)

t

]
Here, funcl is a function with one fixed argument and the ellipsis indicates variable arguments.

Accessing Variable Arguments

^ Since variable arguments have no names, they must be accessed sequentially using special macros
from "stdarg.h". These macros are:
i. va_list
ii. va_start
iii. va_end

Example
1nt addnos (int counr, ...)

{ va_1ist ab;
int r/ sumi
va start (ab, count); ,/*Inltialize t.he argumenL list*,/SUm:0;
for(i=0;1<count;i++)

sum : + va_arg'(ab,int); /*Get next argument*/
va-end (ab) ; /*c.l_ean up*/
return sumi

]
main ()

{ pr:.ntf ("?d\n", addnos(3,5,5,6)) ;
,/ * This prints 76 * /prlntf("? d\nu,addnos(5,10,20,3A,40,50)) ; /* Thls prints 750*/

)

7.12 ARRAYS AND FUNCTIONS
Arrays can be passed to a function in two wavs.

i. Element by element
ii. Passing the entire array

When the elements are passed to the function, their values are copied into the corresponding
function parameters and cannot be modified by the function.

- An entire alray can be passed as an argument to the function. The function gets complete access to
the original array rather than a copied aniy.

Befors we see how it can be done, it is important to understand the importance of the iuray name.

7.1 |

u$,fi c tuosrammins . Function ffi
7.12. I Name of the Array

Consider the declaration
int n[10];

The name of the an'ay is n. The name n without any subscript refers to the starting address or base
address of the array in memory, i.e., it ref-ers to the memory location of the 0'n element of the amay.

Thus, n is equivalent to &n[0]. It is a constant pointer and cannot be changed (i.e., incremented /
decremented. etc.).

When we want to pass the array n to a function sum_of_elements, the call will be given as

sum_of_elements (n),'

This makes the complete array available to the function and the function can make modifications to
the original array.

This is so because by specifying only the array name, we are in effect sending the base address of
the array to the function.

Thus, the name of the array can be used effectively as any other pointer to the array in accessing
the array elements. This is illustrated below.

Program: /* Illustrate array name as a pointer to the array */

Output
65492contains 10

65494contains 20
65496contains 30
65498contains 40
65500contains 50

Since al contains the base address, a1+0 points to the Oth element and *(a1+0) gives the value of
the Oth element.

7.12.2 Passing the Array Element by Element
The array elements can be passed one-by-one to the function. The function thus gets access only to

one element at a time and cannot modify this value. Example as follows:

main ()

{ int n[5] : {10,20,30,40,50};
void display(int); /* functlon prototype */

' int i;
for (i=0; 1<5; i++)

display(nIi]);1
void display(int x)
{ printf ("td", x) I }

W C Programming ()'
utSr0tl

7.t2.3 Passing the Entire Array
In order to pass the entire array, we just have to send the name of the array to the function. Since

I

the name contains the base address, we are effectively sending the entire array. The function gets

access to the original atay (since it has the base address). It can modify the array contents. Example is
as follows:

main ()

{ int n[5] : {10,20,30,44,50}; I

void modify(int b[5]);
modify(n);]

void modify(int bl5l)
{ int i;

for (i:0; i<5; i++)

btil = btil * 2;)

/* Function declaration *,/

In this example, the function modifies the contents of the afiay n, they are changed to 20,40,60,80
and 100.

Note: b is not a new arrav created but it is the same as n because b stores the base address of n.

7.12.4 Passing Dimensional Array to Function
The following program illustrates passing of one dimensional array to a function to find the largest

number from the array.

1. /* Passing an array to a function */

Output
How many elements? : 5

Input values:

100

0

-90

2000

48

Largest number = 2000

Note: The function header could also be written as

int largest(int *x, int n)

ln both the cases, i.e., int x[] and int *x, x means a pointer to an int. The loop inside the function

could also be written as

for (i:1; jcn; j++)
1 l-f (* (x+ j)>large)

Iarge = * 1x+j);
i
In the above programs, we have passed a 1D anay to the function. In the same way, we can pass a

2D arcay to the function as shown below. Program to accept, multiply and display matrices using

functions.

vw
fffif.ff,ffr#il"ril;.il+lr.i...,.'lll:li;.',.;.;,1'rr'*-

'
li+;l..lttiitl'riril,.'.ffi;;14'liitll,.liii,,.,'

-'r.t,.,,i;'

ffiffi#+ ffi ffi*rf i+*#f' *iffi 'ffi ffi ffi "'ffi
!:t.i;i:;:i,:i!:!j:i

t#it$fi+nffi

**"ffi
,;i rt .".ffi

,,, i,'
tj:.t.,' tiii

i,.1r,';1..;..r;.ii

{printf (r'Columns of A must be equal to rows in B\n");

ii:ilrr;. .r,;,'..t

;..ir,,i. .,r ,t'l .
itit.''. r .'.t,

j'ri: r1: :.lll-l'* i *'l't '';,i:l:,.,i',,tit,, ,., . ' , .,.. ,., ll ..i,l

ii:i+jnb..i'f$.;l*rrt:l.lu4..::.t$r,'..al.i....:....:':..'.i:.:].l:..'''..';]j''.-.',
;, |':'ifi l'tj.'}|ffi tl'+ffi ffi lgfti+n-Ei,s

zi,,f
.
ri.. f ;*,"i

' *loiffiftTi$flffi ffi '= =*lffi "
;liiTl;; t. i'',tlti-i' '., :'j ili1r"6 1ffiit;" i,-',t -;

,11: : :, ,1. !..:' :: .,': 1:'::.:l

Nuniber of rows and columns in matrix A : 2

= '' fiffi*t ffiixi.ffir' "'ffi=,"

Number of rows and columns

lVIu I tiplication possible

lnpLrt hlatrix A

to{airix B

I

i

The resuhunt nratrix is

6 32

matrix B

tl
I)t"-

Output a

Number of rows and columns is matrix
Number of rows and columns in matrix
Columns of A must be equal to rows in
N{ultiplication not possible.

A:2 3

B: 2 2

B

Output b

(): C Programming Function Wva'''on w,ffi

7.I3 POINTERS AND FUNCTIONS

Pointer as a Function Argument7.t3.1
is passed to
will be made

the function which gets copied into
to the function variable and not the

variables using a function:

;,.

Function to Calculate Area and Circumference of Circle and Display the
Results in Main

In order to do this, we will have to pass the addresses of variables to store area and circumference
from main to the function.
void calculate(fIoat r, fIoaL *area-ptr, float *circum-ptr)
{ *area*ptr:3.L42*r*r;

circum-pLr :2 3 . L 42x r i
t
)

In main, the function will be called as :

calculate (radius, &area, &circum) ;

7.13.2 Function Returning a Pointer
A function can return a pointer to the calling function, The function header has to be declared as

nni ni- ar rl rir{-rrna * f rrnnt i an n:ma 1n:r:maj. ar I i e1- Iyv4rtee!_e rrslrv \rq!

Example

i. int *f1 (inr);
fl is a function accepting an integer and returning pointer to an integer.

ffi C Programming (k
utstntl

ii. char xf2 (j-nt *., int *);

f2 is a function returning a pointer to datatype char and accepting the addresses of two integer
arguments in two integer pointers.

Program: /* This program accepts the addresses of two integer variables and returns the
address of the larger variable to main */

',,, :*Ix,,r l,r;;;i;'iin.ili'
,$ffi+#69##ir#

###ffiiffir.ffi ffi,ffitr1l[ill:ffi tfifififfi i ffi **ffi ffi l
l

r l ;'-'i'+nn "iigt*iitf;'1.tg1i ffififfiffir tlii++il+ii:;i:#*:r:;liliili;;tii!*,;11;,,!;l11iiL,1iiaii1i

;::,tl1*iiiii-f
F$ fffil ififll+*rr#4r-n#1,iii,r+*;1.

dI
1i;;.:fl'ffi,,,:

i,::L ,,'

-'n*irf.iiiii;+;xl;i+:lii*i#ffi1il-i,illt,;i+il+fi
i

Output
Enter the two numbers: l0
The larger value is 20.

20

7.13.3 Pointers to Functions
A confusing yet powerful feature of C is the function pointer.

Even though a function is not a variable, it still has a physical location in memory.

A function's address is the starting address of the code of the function in memory. This address
assigned to a pointer is the entry point of the function. The pointer can then be used in place of the
function name. It also allows function to be passed as arguments to other functions.

r Function Name: It is a constant pointer pointing to the block of memory where it is stored.

I Declaring Pointer to a function: The syntax for declaring a pointer to a function is:
ro1- rlrn i\/na/* nniniar \r^rial'rla\ /frrnn{-innlc ardrrmanf 'l i cl- \ .

\ }Jv+ltee! / \lsrrvelv ljqrrlvrru_f fou/,

The * along with the pointer_name acts as the function name.

Example

inc(*ptr) (int,int), /x pLr is a pointer to a funcrlon accepting two''^*- .:.-torc r,: lggg and f etUf nino en i nf eoer * /I

. Assigning function address to a pointer: The address of a function can be obtained by only

specifying its name without parenthesis.

The following program illustrates the concepts discussed above:

1. /* Illustrates pointers to functions */

Output
Enter the two numbers : 10 20

The larger is 20

The value is 50.752000

In the following program, we shall calculate the factorial of a number using a pointer to function.

2. /* Illustrates pointer to function */
,,+,,*i','.',

Output
Enter the number whose factorial is required :

The result is 120

. Recursion is a process by which a function catls itself either direcfly or indirecfly. It is calledcircular definition. Direct recursion is when a statement in the body of the function calls itself. Indirectrecursion occurs when the function calls another function, which in turn makes a call to the first one.They are commonly used in applications in which the solution to a problem can be expressed in termsof successively applying the same solution to subset of the probl em. Two important conditions should
be satisfied by any recursive function.
i' Each time the function is called recursively it must be closer to the solution.
ii. There must be some terminating condition, which will stop recursion.

^ There are many exarnples of recursion. One of the most common example is the calculation of thefactorial of a number. The factorial can be stated as:

The factorial of0 is I and the factorial ofany positive integer is the product ofall integers from1ton.

The factorial of 0 is I and the factorial of any positive integer n is the product of n and the
factorial of nurnber n-1.

7 .14 RECURSION

The first definition is iterative while the second is recursive and represented as

nr _ nx (n_1)!

(n-1)! = (n-1) r. (n-Z)!

and so on' It continues tili n becomes 1. This is where the recursion terminates.

1. /* Using a recursive function to calculate factorial */

#++*$-ffi

u,6fr'i C Programming . Function W
Output

Enter the value of the number: 3

The factorial of 3 is 6.

The function calls are depicted below:

From
main

To
main

3. factorial (2) | return 3* 2* 1

t\ =2

2.factorial (1) | returrr2"l
fl=1

no further calls return l

Figure 7.4

i.e., 3 ! 3 * factorial (2)

3*2*factorialll)
3 * 2* r

6

Advantage

Recursive code is much more compact and often much easier to write and understand than the non-
recursive equivalent,

Disadvantages

Recursive funcrions may not provide saving in storage since a stack of values being processed has
to be maintained by the system.

It will not be faster than iterative functions because function calls and returns take lonser.

More Examples of Recursion

1. Computation of Fibonacci series

0, 1, 1, 2,3, 5,8, ,.....

Each element in this sequence is the sum of the

defined by the relations.

fib (n).- n if n == 0 or n==1

fib (n) = fib (n-2) + fib (n-1) if n>=2

two preceding elements. The series can be

W C Programming Function 0"
ut*tof,

The following program displays the first
calculate the nm fibonacci number.

2. /* Fibonacci series */

fibonacci numbers using a recursive function to

;;1;;;1;;,;;;;;+;!vi.1lliti:!t
1i:ii:j;:j!::ii',:i:,itijf,jij::ri:'i

f*ffiffffi ffi +i+rnr+.f#iiffi'lT*rt*.iffi flffi **#frff$fffff fir+#{#r'#+f$f}HfW'#'f,ntt1f,1gw
{ll:i4,li};,nlt+r+::rtt

-
;lij,fitfli1lr*=lruffi

i* ,$.'Hfr f fr #ffi 'fi itffi iififi

,#$#*uft

1,',f
+,i#1;,;1;r..;ffi';r#ffi-ffi

.l..;.I**.#$l.fj.+li*#.{lll::iiill'.li.lil'il1'.il.|;'..iilii.ii1l.ilijili:l:i'-lii::'ll;Ei#l+-r;iilr+!;|i,i

#==***.**'***
*ffi

Output
How many numbers : 5

The first 5 fibonacci numbers are:

01r23
The recursion tree in the calculation of the fifth fibonacci number is:

Flgure 7.5: Recursion tree

The recursive relation can define calculation of greatest common divisor (GCD) of two positive

integers.

gcd (x,Y) = x, if Y ==9
gcd (x,y) - gcd (y,x%oy), otherwise

The recursive function can be written as:

int gcd(int x, int Y)
{

if (y==0)
return (x)

e1 se
return (gcd (y, xEy)) ;

)

and it can be used in main as

Note: abs is a function which returns the absolute value of its argument.

5. Write a program to accept a positiYe integer and displays its
equiYalent binary number using recursion.

Enter two numbers : 25

The scd of 25 and 20 is 5

6. Write a recursive function to find
integer number in a single digit.

$indj".d,{r*i,,'H,u,.t,.,.;'#,ipic,fud qd,h4,o' ;.h t;' " ,;;..'''i,,::i,'.il:,, .;t'; "r ': ':.1::'.1 :,.:1,.i: ,'':,:...,,,r , i''l,l;,1,,,::;i,,1;1, y,:.

i r! !:.)a,t1ii:ia.it.',|:..l.lri

the sum

,!tali!ii:ji:ttt::.titititii:i::i:t:iii',ai'it)t:i:iii.1: i l

of digits of a grven

l;1,,,*;'if{[/;1:.r.il ;= .i,i, .i,,, ;,.,;t]rfr,. i,i.','',',.t , .:l.:ii,:: !: ,, :, ,: : :, : ., .1.r ':: : . , .: . ;

'iTr*r4 ii,,1,,i1t,

11
p*Xffi;=l*"tii-n= rr"'*-i-'a

;
;';'-','iir f', u't"r',,,'

*rfrto**tq?'nr*ffi- :liiJiit'+li1t1rffil'*']tr*;|rl,r'1.l,f1]irt;ir',"1,1; ,r,i...
,,uui,:',,,

1l,i*'""\.'**ili'! , ";';;,,';..tii--'il.
-;i'f ii

7' writc . c program to accept a number from the user and find
out lhe product of digits of that number using recursion.

,,i.,. r;prbdu*t (n i ;, i

SOLVED PROGRAMS
1. write a program using recursive function to print factorial of a

given number.

Ans

tlj: 11:,la,a,:).il:i
L

gMumber;
maj,n(void)

int i;
gUumber = 7;

for(i=7; i<=70; it+)
t

gMumber = Doublalt (gtltlrlber) ;
prLntf(',Ej.nal value ls ltdn, gilunber);

l
lnt Doublelt (t nt myVar)
{

rcturn 2 * myVat;
,

Ans
int main (void) statement displays warning "Function should return the value" because no return
statement is mentioned in the main function.

int
int
{

2. What will be the output? Give explanation.

ffi C Programming (k
utstoll

In gNumber =Doublet (gNumber) statement display Enor
because we are declaring function before main.
If we specify the prototype before main 0 then it display the

2, 4, g, 16,32,64,129,
256, 572, 1024,2048

ii. int r o
natno
{

"Function should have prototype",

value, such as

f (7);
f (7,2) ;
f (7,2r3);

)
f (int a, int b,
t printf("*d td

int c)
ttd", arb, c) ;]

Ans

f is a function which accepts 3 integers.

a. Call for function f(1) shows an eror too few parameters to call f.

b. Call for function f(1,2) shows an effor too few parameters to call f.

c. Call for function f(1,2,3) will be executed and gives output 1 2 3.

Output: 123

ExeRCISES
A. Predict the output
1. main ()

{ 1nt i;
for(i : 1; i<:5; i++)
{ printf ("td",i);

main O ;
]

)

mai-n o
{ inta=10,b:15;

nhrnca /r f-h\ .v:rurrYv \q, spt I

print.f ("?d%du , a,b) i
i
change(int x, int *y)
{ x = 20t

*Y= 3o;
i
maln ()
(abe(100,200)
)
:lra/lnl' n\eyv \-..e ..,

{ prlntf('rtdrt,n)i
)

3.

ur?ri, C Programming ' Function ffi
main ()
r .t^+ -i

-
q

1 lrrL L - J,

-L^/; ..i\.apw\Lt)1,
nrini-f/rri

nr i nt- f / ll \ n i
}/!rrre! \ r., ,

I
)

^L^/i-+ i l*+
4!9\lrrL f , ftlu

{ i :-i +i:')r
i - i-i.) - t)l
; - i_i.- - -)t

J

Programming exercises

Write a function to calculate the roots of a quadratic equation.

Write a function that takes two integer parameters and retums the sum of all integers between

them.

Write a function power which accepts two integers x and y and returns xv.

Write a function ctoi which accepts a character and retums its integer equivalent if it is a digit
and retums -1 otherwise.

Example: ctoi(ch) should return integer 5 if ch has value '5'.

Write a recursive function to calculate and return the sum of digits of a number. Example: Sum

of digits o1397= 19.

Modify the above t'unction such that the sum of digits is a single digit number.

Example: Sum of digits of 397 = 1

Write a recursive program to find the multiplication of two integers.

Review questions

*dtt, i);
: ?du, j);

j)

B.

1.

2.

).

6.

7.

c.

1. Define a function and illustrates how it works.

2. What are the advantages of using functions?

3. What are library and user defined functions?

4. What do you mean by a function prototype?

5. State the different parts of a function? Explain the function header.

6. What are formal and actual parameters?

7. Illustrate with an example function declaration, function definition and function call.

8. What is a local variable? Explain using examples.

9. Explain call by value and call by reference.

10. What is recursion? Explain with examples.

11. What is the meaning of the following declarations?

i. int f(float, char);

iih

andIt,

't!'a

o::'
!);

''j}lil*ffi;;. -. :.,,

,"ecuin 21" myvar;

;;;i'

ttl::lltl

a4t':
,:titi:t.l

llt!tl

6i

*ltt a c program,lo aicepr a number fiom qhe ur., uoJ fino ouriitre proapcl.of,nidFEffi
humber using recursion.

ilt- lilexplain
rhe ourput or toiiowing prosram:

l

:$li;
ill, ''1, o, ;, , ,

(t^'
trfi$$ffi$$

l:, ;tl:'i
f ;.,.til:.i,l

Storo e Closses And Sco

8.I MEANING OF TERMS
Every variable in a progam has some memory associated with it. Memory for variables is

allocated and releaseo ar Ciffffs1.; points in the program.

The scope of a variable can be defined as the region or part of the program in which the variable is
visible or valid. Visible here also means accessible.

When speaking about scope, the term variable refers to all C data types: simple variables, arrays,
structures, pointers, symbolic constants, etc.

Scope also affects a variable's extent or lifetime.

Extent: This is the period of time during which memory is associated-with a variable. In other
words" a variable lifetime is how long the variable persists in memory. :

Storage class refers to the manner in which memory is allocated by the compiler to variables.

The storage class determines the scope and the lifetime of a variable.

Storage classes are:

auto

static

extern

register

8r1

'W
c Progr"**irg ' . stor^g" ct"rr",

"nd
srop"

ur()',

We have written a number of programs so far and have not used any of these classes as yet. The
reason that the previous programs compile and run is that if no class is mentioned, a default storage
class will be assigned depending upon the context in which the variable is used.

8.2 SCOPE

A demonstration of scope

1. /'r lllustration variable scope */

#includecstdio.ht ; ;:'' :,'

main ()
',,'.{intn=5;

iii;:ijii' *:;i'F=

i:;,-,;;:i:j;il
j

Output
Cornpiler error: The variable n is defined within main and is visible only in function main. I

ot be accessed in the function displav.

We will now make a small modification to the above program.

2. /* Illustrates variable scope */

Output
5

5

()" C Programming . storageClasses and Scope
'fffi

We have made a minor modillcation in the first program by moving the definition of n outside

main (). By doing so, we have changed its scope.

In program 1, n is a local variables, i.e., its scope is limited to the block where it is defined.

In program 2,nis a global (external) variable and its scope is the entire program.

Block Scope and File Scope

The scope of an identifier falls under two categories

i. Block scope (or local scope)

ii. File scope

i. Block Scope: An identifier is said to have local or block scope if it is defined within a function

or a block. It can be used only within that function or block. It cannot be used outside. Such

identifiers are called local identifiers.

ii. File Scope: If an identifier is defined outside a function it can be used in any function in the

program, i.e., it has a visibility over the entire file. Such identifiers are called global identifiers.

Examples: /* LocaL and file scoPe*/

#include<stdio . h>
int n : 20,
main ()

{ intm:10;
disp-values O;]

void disp-values ()

{ printf (uAd %du, m, n) i }

In this program, variable n has file scope whereas m has block scope. n can be usecl in auy function

in the file whereas m can onlv be used in function main because it has been defined in main.

Advantages of Block Scope

1. Data integrity is preserved since a function cannot access the data of another.

2. Only the necessary data can be passed to a function thus protecting the remaining data.

Advantages of File Scope

1. If some common data is needed by all functions, passing it as parameters will not be feasible.

Making it global will be much easier.

2. Any changes made to the global data by a function can be seen and used by other functions.

Disadvantages of File Scope

1. If too many variables are made global, they will remain in memory till program execution is

over. Thus, memory wiil remain allocated even when they are not being used.

2. Any function can modify global data. Hence data cannot be protected.

W C Programming Storage C/asses and Scope ()"
tl|ltnt

8.3

8.3. I

STORAGE CLASSES
The storage class of a variable determines

where it is stored,

its default initial value.

scope of the variable,

lifetime of the variable,

We shall now study the four storage classes

Automatic Storage Class

This is the default storage class of variables that are declared within a function" (All the variables
that we have studied in previous chapters belong to this class).

In order to explicity declare a variable which belongs to this class, the keyword auto is used.

Emmple: auto int i'i
This variable comes into existence only when the function (where it is defined) is called and ceases

to exist after the function is exited; hence termed automatic.

Features

i. Storage : Memory

ii. Scope : Local to the block where it is defined. (Block scope)

iii, Lifetime : It exists as long as control remains in the block where

iv. ' Default initial value : Garbaee.

Output
20

l0

In this prosram, the two variables i are different variables since they are defined in different blocks.

Program: /* Illustrate automatic variablesx/

u/il;, C Progr^^*irg n Srorug" Ciurr",
"ra

S"op, W
8.3.2 Extern Storage Class

Variables belonging to this class are also called as global variables or external variables. They are

declared outside all functions and are accessible to all the functions in that source code file.

The variable n in (Refer point B.2, program 2) is a global variable. In this prograrll n is declared
outside nuin() which rnakes it accessible to all the functions in that file.

In some cases, however, the program code may extend over two or more separate files. In such a

case, special hanclling is required fbr external variables.

Use of Extern Keyword

If the functiort uses an external variable, it is ri gtrocl proglarrinring prueliel to dcclurc it aglin
within the function using the extern keyworcl.

The syntax is
i-+ - rc^Lc!tl udua_LvPg vd!,

E.rample

/* Illustrates external variables */

#'inc'lUde(s,bdio.h>,
int,, n'l*',,,51 '.i ,", ,;;,,:,,,,1,.1., def,initlon */ :

'

'...: :P*.:*!.9& \":: \'4r:: .q.q r rr, , : : ::_:.: i.: :. . , :i:],:l :

l:ili:::ril9lfl.G !r.-I:l.l :i +.!.I u,,:rlit:, i ;,., :

ii;;r rri,ic#jl ;,il#r r ; i ;' e*";;:,:1::;i r:;.1{rqs t{r.7:t

.I'\' d6r larritl^n x /
L: ueu !q!:d L ruil. I .r

:.1.: ..:.,r :::: . :

..:j l li: :. , :..:::

the function uses au extenlal variatrle, which

file, the declarations are not rcquired.

in sepdrate source code files, the cleciaration

i. The declaration within the function indicates that

is defined elsewhere.

ii. If both these functions are in the same source code

iii. If the variable n is to be used iu tunctions written
using the extern keyword is reqr-rired.

Featu res

i. Storage : Mcnroly

ii. Scope : File scope

2.

J.

iii. Lifetime : It exists as long as the program which
value between functions.

iv. Default initial value : Z,ero

the variable is runnins. It retains its

Uses of Global Variables
I' Use of global variable simplifies communication, i.e., they need not be passed to functions,

(thereby making argument lists shorter) and any function can use them whenever required.

2. Symbolic constants are often declared globally.

Disadvantages

l. By using external variables, the principles of modular programming i.e. data isolation is
violated.

Even when not required, external variables persist in memory.

Variables can be changed in unexpected and inadvertent ways and it is difficult to keep track of
the changes made thereby leading to problems.

8.3.3 Static Storage Class
Local variables are automatic by default, which means that every time the function in which they

Itrc declared is called, they are created and destroyed when the funciion ends. Thev do not retain their
virluc between functions calls.

l'lowever, in many cases it is required that a variable retains its value between function calls. This
is possible if the variable is declared belonging to the static storage class.

Syntax: st.atic data_typevariable;
E.vtrnple: stat.j_c int x;

Stati n I nna f.^f^FJ 1I.

Types of Static Variabtes
I.

lI.

Local static variables: These variables have block or function scope and they retain their
valuc hetween calls to the function.

Global static variables: They are global to the file in which they are defined. Unlike an
ordinary external variable, which is visible to all functions in the file and functions in other
files, a static extemal variable is visible only to functions in its own file.

ffiT'**i'ffi
ii'i -"i . , l,r,t''li*i

Program: /* Illustration of local static variable and automatic variable */

Output
lcount = t
lcount= 1

lcount = 1

lcount = 1

lcount = 1

scount = I

scount = 2

scount = 3

scount = 4

scount = 5

:.#i:.j

ti,irlii

The result strows that every time function incrernent is called lcount is created and initialized to 0

whgreas scount is initialized only once and its value persists between function calls.

Features

i. Storage : Memory

ii. Scope : Block or file scope depending upon where it is declared.

iii. Lifetime : Persists between function calls if scope is block scope.

iv. Default initial value : kro.

8.3.4 Register Storage Class

The register keyword is used to tell the compiler to store the variable in a CPU register rather than

in main memory. The register variables have similar features as the automatic storage class except for
the storage location.

Register Variables

The CPU has its own limited storage locations, which it uses for actual da[a operations. These

locations are called registers. To manipulate data and perform operations, the CPU moves data back

and forth between the memory and registers, which takes a finite amount of time.

Thus, if a particular variable is kept in the register itself, the CPU can access it faster. Hence,

variables, which are heavily used, may be declared of this type so that execution is faster.

Syntax: register data-type variable;

Example: register int i;
register char ch;

2.

3.

Limitations

1. There are only a limited number of registers in the CPU. So, a register may not be available for
the variable' ln such a case, the variable is treated as an ordinary automatic variable.

Most compilers allow this storage class to be used only with integer data type. (int or char)

The unary & operator (address of) cannot be used with these variables either explicitly or
implicitly.

It cannot be used with either static or external storage classes.

lt cannot be used for structures. affavs or unions.

F eatu res

i. Storage : CPU registers

ii. Scope r Biock scope

iii. Lifetime : Exists as long as control is within the block where it is defined

iv. Default initial value : Garbase

Summary

The following table summarizes the storage classes, scope and initializations.

Ur()u C Progr"*ring . Stor g" Ctn"",
"nd

S"op" W

ExeRcrsEs
A. Predict the outputs

main ()

{inti;
i : abc0;
printf("td....";i)i
i: abc0;
nrint- F/tr9/lil i t\ -* r*) j

)

^r-rl^ ;-5 -L^/\D L4LIU IIIL dPU \ ,'

{ int i:L;
ral- rrrn i ++ rr. + I ' t

)

^r,f ^Fh
i h+ i .

9 LgIll !llL ! t

main ()

I nrint-f /xQAn i \.t I/!rrru!\ us r!/t

)

static int i:100;
main ()

{ stat,ic int i : 200,
abcO;
nrint-f /w9r|il i I\ '* r-) ;

l
abc o
i printf("td..", i);
)

/* E'i 1a aa r * /

int a = 100;
/* File bb.c * /
include ttaa . c tt

extern int a;
main ()

{ printf ("*d",a)1
)

Review Questions

4.

B.

l. What do the following terms mean?

i. Scope ii. Extent iii. Storage class

2. What do you mean by block scope and file scope? Explain with examples.

3. What is meant by the storage class of a variable? Name the different storage classes in C.

4. What is meant by local variables?

5. Distinguish between local and global variables.

6. what are static variables? what are the two types of static variables?

7. Differentiate between automatic and static storage classes.

8. What is the purpose of the extern keyword?

9. What values does an un-initialized global variable contain?

10. What do you understand by block scope of a variable? How does nested blocks affect its
accessibility?

11. what are the advantages and limitations of the register storage class?

12. When is the register storage class most useful?

13. Discuss different storage classes in C.

14. Write two differences between auto and static variables.

Qr
ul$l0ll

Strucluf€, Union,
Enumerolion And

9.I STRUCTURES
Structures are also called 'fecords' in some languages like PASCAL. The use of structures helps

organize complicated data, particularly in large programs because they permit a $oup of related

variables to be ffeated as a unit rather than as separate entities.

Definition
A structure is a composition of variables possibly of different data types, grouped together under a

single name. Each variable within the structure is called a'member'. The name given to the structure is

calied a 'structure tag'. The data type of the variables could be any of C's data types including alrays,

pointers and other structues.

9. t.1 Declaring and lnitializing Structure

A structure can be declared in the following way.

Syntax: struct tag
{

memberl;
member2;

membern i

;ii "' '&
ulll0ll

Examples

1. struct student
{

char name [20] ;
int ro11no;
int marks;

t.It

2. struct data
{

int day;
int month;
int year;

'I .

The struct keyword is used to declare structures. The
A structure declaration as above reserves no storage. It
structure.

members of the structure are enclosed in { }.
merely describes a .template' or shape of a

Memory is allocated only when 'instances' or variables for the structures are created.

There are two ways to create instances of a structure.

i. struct tag
t

structure_members i
] lnstance;

ii. struct tag
1

structure_members;
l.t,
struct tag instance;

In (i), the instances are declared immediately after the structure template.

In (ii) the instances are declared later using the structure tag.

Examples

l. struct student
i char name[20];

int ro.Ll_no;
int marks;

] stud1, stud2;
2. struct student

i char name[20];
int rollno;
int marks;

l;
st.ruct student studL, stud2;

u{l;r C Programming o Structure,lJnion, Enumeration... ffi
name rollno marks

studl

stud2

501 0

lnitializing a Structure Variable

An instance of a structure can be assigned values during declaration.

i. struct student
{ char name[20];

int rollno;
int marks;

) studl - { UABCDU ,10,951 ;

ii. struct time
{ int hours;

int minutes;
1nt seconds;

] time_of_birth : { 10 ,15,0} ;

If there are fewer initializers than the members, the remaining members are initialized with 0.

9.t.2 Accessing Structure Members

Individual members of the structures can be used just like other variables. Structure members can

be accessed using the structure member operator (.) also called the dot operator. This operator is used

between the structure name and the member name.

Syntax: variablename.fieldname

Example: The individual members of the structure variable studl in the previous example, can be

accessed as

studl . name
studl . rc1lno
studl.marks

Values can also be assigned to those members.

^r
F^h!' / -+'.lToL!u1,1 \oLuur.rrorrr€7'f,yr')'

studl .rol-1no = 100;
studl-.marks = 80;

They can be read and displayed using the scanf and printf functions.

scanf (rttstdtdr', studl.name, &studL.ro1lno, &studl.marks) ;
pri-ntf ("tstdtd", studL .name, studl.rollno, stud1.marks) ;

ffi C Programming Structure, Union, Enumeration . . . 0,
otstDtl

9.1.3 Complex Structures
i. Structure within a Structure

The individual members of a structure can be other structures as well. This can be done in two
ways:

a, struct date
{ int day;

i-nt month;
int year;

1.t,

struct student
i char name [20] ;

int rollno;

struct date birthdate;
int marks;

) studl i
b. struct sludent

{ char name[20];
int ro1lno;
struct date
i int day;

int month;
int year;

) blrthdate;
1nt. marks;

) studl;
In (a) date is declared as a separate structure. Thus it can be used as any other structure.

kr (b) date is an embedded structure and cannot be used directly elsewhere.

Accessing members of nested structures: The members of variable studl will be

studl . name
studl . rol-Lno
studl.birthdate.day
studl . birthdate . month
studl.birthdate.vear
studl.marks

Example

struct addition
{ float da;

float hra;
t;
struct deduction
{ float itax;

f Inrf nfr'r--xi
li

u.

strucL empfoyee
{ char name [20] ;

float bas-saI;
struct addition add;
struct deduction deduct;

] e1;

The individual members are

e1. name

e1 . bas-sa]
e1 . add. da
e1 . add. hra
eL.deduct.itax
el.deduct.ptax
lnitiallzatlon

To initialize variables that belong to a structure containing a nested structure, the initialization

values have to be given in order.

Example: struct student studl: {"ABCDrr7L07
{L0, 12, 1985 } , 95 } ;

Structure containing an array

A structue can contain a$ays as its members. For example, if we wish to store the information

about the marks ot 3 sirbjects of a student, the declmation will be

struct student
{ char name[20];

int roflno;
int marks [3] ;
int total;

J studl;

The members will be

studl.name, stud1.ro11no,
studl.marks [0]
studL.marks [1]
studl.marks[2]

9.1 .4 The dot operator

The dot operator is in the highest precedence goup in the precedence table and has a priority over

unary, arithmetic, relational, logical and assignment operators.

The expression ++ studl.rollno is equivalent to ++ (studl.rollno)'

C Programming Structure, Union, Enumeration .

Size of a Structure
The size of a variable of a structure is the sum of sizes required for its individual members.
Example: struct student

{ char name[20];
int rollno;
l-nt. marks;

] studl-;
size of studl = size of name + size of roilno + size of marks

= 20+2+2 = 24bytes

The size of a structure variabre can be found using the sizeofoperator.

9.t .6 Operations on a Structure
i' Copying one structure variable's members to another: The values of the members can beassigned to those of another variable by assigning them individually as shown below.

strucL date datel, : {L,I,19OO }struct date date2;
date2.day : dateL.d-y;
date2.month = datel.month;
date3 . year = datel . year i

A better and convenient way is to use the assignment operator directry.
date2 : datel;
structure*variabLe 1 :struclure_variable2
This is a perfectly valid assignment.

ii. The sizeofoperator can be used on a structure.

It will give the number of bytes required for a variable of the srrucrure.

Example: sizeof(struct date) wrll give 6

iii' A structure variable can be passed as a parameter to a function.
iv. 'The address ofa structure can be obtained using the & (address of) operator.
v' A function can accept or retum a structurc variable or a pointer to a structure.

9.t.5

9.t .7 Array of Structures
It is possible to declare,an afiay of structures just like any other anay. This array will haveindividual structures as its elements. The afiay canbe declared when the structure is declared or laterusing the structure tag. All array elements occupy consecutive memory locations.
Syntax: struct t.ag array_name [size];
Example: struct student stud[10];

Accessing Elements of the ArraY

name maiks

viz., name, rollno, marks in three
display should be of all students

stud [0]

stud [1]

stud [9]

Individual elements can be accessed as:

stud [0] .name
stud[0].ro1lno
stud [0] .marks

Initializing the Array of Structures

Consider the declaration

struct student stud[4] ;

The stud array can be initialized as shown.

struct student stud[4]:
{ trABCu,1r89,

trDEFtr,2,64,
rrr:uTn ? ?q

, Jt tJt

nJKLt,4,90 'r,

stud[O] to stud[3] are stored sequentially in memory.

We shall now write a program to store the data of 10 students,

subjects and percentage. The percentage will be calculated. The
scoring 70 percent or more.

We shall be using the concept of structures studied so far.

1. /* Illustrates structures */

i;i?,7,ftiiit;itfffiiiiilffi

, : r .:::.rl i i, :,1, i...., i:. : .1. l

I ;.. ::,S,,#.;.' i,i i.i
- ::,iiiui;;li;il'i;-,. -

I lt6gr2rrirnitry Structure, Unian. Enunteratian . . . (),
ut*tnt

' ' r-l li_ i,r i ir,:r r '.li I .i.tl

;':rirlLf.i',\ll\i:.i..,lqtit.|.i..i:.'o}

..,1,. r.irr-ri:.ri il),' ,

si.'.L.r iil .lr,ar'*s tl) i j
. r'f i,o..rl- isunr/ j; l , ,, ' , ,

I r-,;1tr'.1r-,. l--,.rv1r't;{ }rerCentages

".,:l!r.
i: '.: lil

(rr.'itla;iril; rrrr r,il,i'

f i {.ii'1i,)' : l)..,,"1,,rlj,'r

"':i;.,:il l.11 I 1,,', :rr:

.,rl i: ,'-'ri *tiiii:!i{}yff in Sofl{,w'ar"e c$t}'!pmrly which
i'';iii;11i,i1yr;re, i,trriiiiiifi{:,&tialn, 11'ear of' joining, tofa}
:uti| :;{.rli*"y. [-]!rcpna'i, fke iu,I'ormration of ern$]l$yei;
:;: ; t 1 i r,"i r i ; fi'{illl f i 1,,fl 4. [i tl 1 t.{l mnilli ffi.}Lt}Xl S*f }tf f y.

) = lv ^t

: n:

." .l I -r ll 'j.: r :1''. : i
l .'..-. I ln.'l :

\')L,1 ..,\' :).ir- : i-"c:Li; .:

vc :i-,:i 1r riicia :i;A (,".tC,1,(l) i
'.':J.1)...Ji.' i,

; " l',
.

",.,
.1 , .:

I

Frr:
j,l,if i (ll \n

$ tialf (,it1!o.: lr

+ir!' .

r..-L :' rlrD:. i1

,--,.t .1, '.,,t- li I {t I ::i, r r--r:---,- i \i,

,:il,l.,:I i "i,ij"
:)' -i.:)\-.'- i tt',.r

':l .l.l l: , t' i..-t.tt

!,nr.--r EmpLc-:;ee }larner') ;
, recli].na;ne); :

L r. i ar r hd {),1i ' r l lcat lon dIge !+ 4

, I :rl | : I . qua.LJ.i':ciltiln) ;
f,'t''.,.L:lre L.ate of iolnlr:q "t Empr"veEt::i

.,':_ l.C,; i);
ll,rr:,.:r i:he1 Exp of nrnploy*or') I ,,

, :, "iir.exp);
,f .: lir 1;r'1.,,' <-.r'il lintpl()yr:retr);

, : ,'r.i'i ,. I .li.l-.,.rrV) i

C Prograntntii'tg S;rr.rr;trr;e, l.j n io n, E nu n tt: ;;tion

&& (r,ec Ii J . salary <;':maxsal,ery))

Ss'lf'; iec f i1
#fr:rt$;ntplqyqe

IJIIrV/

;.l**i,r+c,)]..;
,,: ll gi tli':':i;,

1::.:,i :it

fi ;p1pLcr g,e,e1,,l,i4 * il',, r a,c.!r1,1,,,,,ci,;o.- i)

, re-.clr] .,rp; ;
e^,g,fril ;', ; ;,,t:;i1,:1 r,l,.s A l,e:f ,_!" 7',

:r :';,

",';,

:: ;: ;,: :,,

"t '''i
'l

|i; !', f
;i

i"l I

':
.,

,::l:.....,

i.itii,itl | :i:.: :)lttl::: 1. :..:,,:t,,

l lcrllP :t r w.I

t:

r,i 1{i:.::l:,!.'if,aii, iA r-il f i l nrma iil
.t. 9+ r

f r+,
r li

+ G srlr:++L+ 1: f + i I | :* l;' i t cir: rrF:, ::x : r
:.'l:i. ll. l r.jrl,l "': ,.:.,,: , : .

I +.:j r P:. ruq. i /

^.,;,,"*\ ,--t -.^ -i - --,ltrd-\IJIut r FL L(.-s r Lgifi

mi ni,nrrn nri la i tsm

having r,naxiilrrrnr pr i r"-' \'r ") j
id*?dl', il lmt] . i 1:iFr- j ;r j

ffi c Programming o structure, LJnion, Enumeration... ()'
ffiffi Utglotl

{tt:;iltiiil', :.t;:iii,iiriil

9. | .8 Structures and Pointers
i. A pointer within a structure: A structure can have a pointer as one of its members. They can

be used just like any other pointer variables.

Exam,k.' "t1"tlu.?o,-,nr,
char *itemname;
) item;

They can be used as illustrated below-

rtem.amount = &costi
item. i-temname = ttsteel rt ;

They can be de-referenced using the * operator. The expression *item.amount evaluates to the
value of cost. item.itemname points to the string "steel" stored elsewhere in memory.

ii. Pointer to a structure: The address of a structure variable can be obtained by using the &
operator. This address can be assigned to a pointer variable, which has to be declared as a
pointer to a structure as illustrated below.

struct student.
{ ah:r nama f ?O l ,

..grrrvLav j,

int rollno;
'inl- mrrlect?'l .

,rv L v L

l studl;
struct student *ptr;
ptr = &studl_

/rk nnin{-6r i-^ o+rtral- <l-rrdant- *// I,Vlrrusr Lv JLL ---

studl

name rollno marks[O] marks[l] marks[2]

2000 2020 2022 2026

;___,ptr | 2000
|

4058

Accessing members: There are three ways by which members of studi can be accessed:

a. using the strucfure name

stud1. name, stud1. rollno
b. Using the pointer and indirection operator

/*nfr\ h-m^ /*^fF\ rnl l^^\ yu!,/ .lrar[cr \"PL!,, .rurrrlu

2024

i;'1'|i.l,f#fli#*xiiini'iiiifiii##ri,7i,!i|iiI,.....wi-frlrtr,flWnf

,1'.1.,.,1..i1.t11111,,..;'li.fr,',',',
.i'.i,i..lli.i.i:1.1.l.1.,.'..fi1ii1.1i1i1

,r{li, C Programming . Structure, Union, Enumeration...' W
c. Using the pointer and the membership operator

ptr->name, ptr->rolIno, ptr->marks[1]
Following example illustrates incrementing a pointer to a structure variable. Incrementing
causes the pointer to point to the next structure variable.

iii. Pointer to an array of structures: A pointer variable can be made to point to an array of
structures by assigning it the base address of the anay. The array elements can be accessed by
incrementing the pointer. Incrementing causes the pointer to point to the next structure variable.

Program: Illustrates pointer to a structure array

Output
At address 96 : ABC I

At address 108 : DEF 2
At address 120 : GHI3
At address 132 : JKL 4

This can be depicted pictorially as:

a- stu[0] --y4-* stu[1] *-23- stu[2] --,.y.

106 108 118 120

A pointer to a structure within the same structure (self referential structure):
of structures, the structure contains a pointer to itself.

These type of structures are widely used in data structures like linked lists, trees etc.

struct node
I I ^r l-l +.1 IIIU UALOT

struct. node *ptr i /* poLnter to strucL node */)i

In this type

''+fii'** il4il$iftilfi##*++ffir*ffiffi,

lv.

v.

In this example, the structure node contains a pointer to itself. We can see its use in a linked
list. A linked list is a collection of nodes each linked to the next using a pointer.

t'r,
node node

Dynamically allocating memory for each node and then linking the node cancreatethis list.
Array of Pointers to Structures: In the last chapter we saw an aftay of pointers to strings.
similarly, we can have an array of pointers to structure elements.

They are very useful in dynamic memory allocation, which saves a lot of memory space.

Example: struct stud.ent
{ char name[20];

int rolIno;
) *sptr t j_0I ;

Here sptr is an array of 10 pointers to struct student. We would use an array of pointers when
we do not know how many students there are initially. So declaring an array of a targe number
of students will cause a lot of memory wasr4ge. Hence, we can dynamically allocate space for
'n' students and store the address in the array as shown below.
printf (r'How many students?r?) ;
scanf(uAd,r&n)i
for (i=0; i<n; i++)
{sptrIi] :(st.ruct student. *) marloc(sizeof (struct student));

scanf (rr*stdtr | sptr lil ->name/ spLr Ii] _>rollno) ;]/* Displaying d.ata *,/
for (i:0; i<n; i++)
printf ("\n Name:8s Rorlno: td.r', sptr Ii-]->name, sptr Ii] ->ro1]no) ;
Each student record is stored at different memory locations, since we are allocating memory for
individual members. Their addresses are stored in the array of pointers using which we can
access individual members.

sptr[01

sptrln-11

sptr[9]

(k
utgtIll

vl. Some declarations and their meanings: Tho structure operators. and + together with () for
function calls and [] for subscripts are at the top of the precedence hierarchy'

Example: struct {

int len ;
char *str;

I *h.) Yr

Then

++o ->len; increments len because it is equivalent to ++ (p-rlen)

(++p) ->len; increments p before accessing len

(p++)->len; increments p afterwards
*p->str; fetches whatever str points to

*p->str ++; increments str after fetching whatever str points to

(*p-> str)++; increments whatever str points to
*p++->str; increments p after accessing whatever str points to

Using typedef with Structures

a.

b.

d.

e.

f.
q
a'

9. r.9

The typedef keyword can be used to give a new type name for the structure. The new name can

be used to create ins[ances, passing values to functions and declaring pointers, etc.

Examples

1. typedef struct
i char name[20];

int rollno;
int marks i -

] student;

2. typedef struct studrec
{ char name[20];

int rollno;
int marks;

) student;

student is the name of the new type. In (2) studrec is the tag nalr., which is not needed but

used for clarity.

Variables of this type can be created by the statement:

student. studl-, s [100] '
*Ptr,.

Examples

1. typedef strucL
{ int day,

int month; -

Illu vsql ,

) datel / * date i-s a new data tYPe *,/

C Programming Structure, Union, Enumeration .

typedef struct
{ char name [25] ;

date birthdate;
char acldress [50] ;

] person; / * person is a new data type */
person lrst[10]; /* Iist is. an array of 10 elements of type person */

9.2 STRUCTURES AND ENUMERATED DATA TYPE
Enunerated data types can be used as a part of a sttucture as illustrated in the example below.

Program: Illustrates enumerated data type

(),
l|ter.|r

$f*H#tflilri;i$:Tif:fj H:lf;gin,,*n***; aocc*at*'r" ',',,
,,,:,

,il''i"i]ir+

il $ffie;' '1 .''' " -'' ffi
ff$H** 'i$ffi'-=ffi{ case tehth i,

.'l
1.',,. ,1',.1,,.,".'tl.' ',',

,

case .,twef.f th : eL - emc.:.'sriide *

;,. ;.,,1,1;.:,,1,,

IriestetSi t
dbeEcfate i

Structures and Functions
l. to a function as an

iiilii

lji +,i:l
i: i:i:lilli!

,i;::.:t:iir..
i :!t:1.:.ai::

:ll:tr:)i

.' io,ro.rname, ipgp->amo"*t,.i,.i,i.,.,'
1l'

'
'
'

' '
'

' ' '

' ' '
' ; '

: : : : '
' '

' : : : : : ' ' :: i. : 'l :]: : : :] : i

For example, struct student acceptdata(); is a function which returns a structure of type student'

ii. Passing an array of structures to functions: In the above program, we passed individual

structure items to the function. However, we can pass the entire aray to the function just like

any other array.

Example: void acceptdata(struct data record[], int n);

Accepts an anay of structures and an integer n. The call to this function can be given as

acceptdata(1ist, 10);

where list is an aray of structures as seen in the previous example.

Example: We shall now write a program to store student information of n students and display

the information in descending order of total marks. We will use functions.

'll ,.,.,, ,',,,i ', ::"' '"'' ' '' '.'.'';,l.;,li,l.'.:,.,,,,lr,:,',,;::i,j,,i,,,,.,,'

,,ii.,1itt$ nl ';

ffiffiffiffi*':'.*.*r-'il ,
=",-

rl

#u$ili#
i+r;li,r.rl..

ilritii*

+ili+i

ffi "to*rr*
o structure,rJnion,Enumeration... {)_"

9.3 UNION
A union is analogous to a variant record in PASCAL. It is very similar to a structure but only one

of its members can be used at a time.

Definition
A union is a variable that contains multiple members of possibly different data types grouped

together under a single name. However, all of them occupy the same memory area. Hence, only one of
the members will be active at a time.

Unions provide a way to manipulate different kinds of data in a single area of storage. There are
many applications where we would want to store different data terms at different times. A union
provides a facility to do this.

9.3. I Declaration of a
A union is declared in the same wav

of'struct'.
Syntax: union tag

{ union_members;
] instance;

Example: union u
{ char s [5];

]-nE num;
I rr1.
t vL,

Union
as a structure except that the keyword 'union' is used instead

u{l& C Programming . Structure,lJnion, Enumeration... ffi

u1

S

Byte 0 Byte 1 Byte 2 Byie 3 Byte 4

num

The variable ul will be allocated sufficient storage for the variable to accommodate the largest
member of the union. In this example, it will be allocated 5 bytes.

Only one member, i.e., either the string or the integer num will be stored and can be accessed at a
time. Both do not exist simultaneously.

9.3.2 Accessing Members of the Union

Union members can be accessed using the dot operators, i.e.,

un i on_var iabl e . member

If we have a pointer to the union (similar to the pointer to a structure), the members are accessed
using the->operator.

unionJolnter->member

Example: union u *ptr : &u1; / * Initialize pointer to union */

The following expressions are valid:

ptr->s

ptr->num

Initializing a Union

Since only one member of the union can be used at a time, only one can be initialized.

The initializer for the union is either a single expression of the same type or a brace enclosed
initializer for the first member of the union, i.e., only the first member can be initialized.

9.3.4 Union within a Structure and Union
Just as it is possible to include one structure within the other, the same can be done with unions.

This can be better understood with an example. Suppose we wish to store employee information
viz., namq id and designation.

If the designation is 'M' (for managers) the number of departments he manages should be stored
and if his designation is TV' (for workers), his department name should be stored.

The sffucture and union declarations will be:

union info
{

int no_of_depts;

u1.s

ul.num

9.3.3

ffi C Programming Structure, Union, Enumeration

char dept.name [2C];

srrucc empre
I ahar n:ma l?Ol .

rrerlv L a v L

int id;
^L^* i^^t -.urro! qgDf v,

union info detaj I s;
] emp[100];

9.3.5 Structure Assignment
strcpy (emp [0] . name, "ABC") ;
Afrhllll 1n : llli5.vrLLr L v J . +u

emp[0].desig = rM';
omnfOl dofrilc n^ nf ,-lan+r - 2.srLrvLwr tusLqfrorllv_v!_ucl/LD - J,

strcpy (emp [1] . name, "XYZ") i
emp[1].id = 2008;
emp [1] .desig : 'W';
qfrcnrr(omnl'1 l r'la+-i'1 - .l^-+^-'.^ llM:nrrf:n1-rrrinatr\ .oLrUIJJ \slL'IrLaJ .UCLOflD.UgpUrrdlLLg, Irqlru!quuu!frrv l,

9.3.6 Operations on a Union
A union vadable can be assigned to another union variable.

The address of the union vadable can be obtained using the address-of operator.

Only the first member of the union can be initialized.
A function can accept and return a union or a pointer to a union.
The sizeof operator can be used with a union.

The typedef keyword can be used to create a synonym for a union. Instances can then be
created using this synonym.

Example: typedef union
{ int no_of_depts;

char deptname [10];
) info;
info det.alls; /*fnstance of info */

9.4 DIFFERENCE BETWEEN STRUCTURE AND
UNION

Although the syntax for declaring and accessing structure and union variables is the same, there are
important differences between them.

i. Memory allocation
Each member of a structure is allocated memory space, i.e., a structure variable occupies the
sum of sizes of all members in the variables.
In case of a union, the amount of memory required is the same as its largest member.

u{l&t C Programming . Structure,I)nion, Enumeration... ffi
ii. Accessing members

All the strlrctule rnembers can be accessed at any given time.

Only one nrember of the union can be accessed at any given time.

iii. Initialization

All nrembers o1'a structure variable can be initialized.

Only the tlrst member of a union variable can be initialized.

SOLVED PROGRAMS
1. Create structure Elect Bill having members consunler_no, name, no_of_units, amt. Write

a program to accept l0 records.

Calculate amt - using following rate.

For no_of_units less than 100 - rate Rs. 1.50 per unit.
no_of_units greater than 100 - rate Rs. 6.50 per unit.

Display the records of largest and smallest amt.
#,include<stdio.h> " : :

f;Sin-4#jeitliiii$' .?ts:}'liliilii:irril,'i'i'.;liliil.iiii:io,:iil,i,,'r.:i,,i.il.i....'t..,"iiiiili.i:iil.,i

rii.iiiritft:-flffilf;;ri"''', , :- ,,,,
:,i,.,,,,.

.

fi a"€iii;' iii ii
, ,. . . .,,,.', -,,' : i

Oci. 2010 - t0ltl

ffi C Programming Structure, tJnion, Enumeration... ---(/:utst0tl

.ri:-iii'iiii

Write a C program that stores the student information (name,
dob, admission taken fo the course) in a "student.dat" file. Read
the file and display all student information along with their age.
The list should be age wise.

'!l!lilL:l::'!lj

,ll,:.i,':':,,;,i.:i:l1;ij

l,it:'

#ii,ir* urliifi lfiil' f#.I.*'' lt :$F#,1, i#;.fila;1,.',,:,,t, i,i;t,',, Ii.il.li$,fr

fl-iffiL**,
'ffiiri1

+r*ffi * # i;ffi

C Programming Structure, Union, Enumeration . . .

3. what will be the output of the following program? Give the explanation.Void naino
{

etsuct eryioyoo
{

unaigned td: B;
unstgned aex: l;
unaignad age: 7;

];
Struct empToyee €\p = {203, 1,23};

clzecrO;
pztntf, ("*dtdtdo, eryt.td, aqr^. ae;,t eryt.age) ;getchO;
]

Ans
This program displays four errors and one warnins.
Error
1' Too many initialization. That means *.-T. initialized many time the program of a particular variable.2' id is not a member of employee' In this program, *" *" using the column with every variableswhen we define the template of structure and when we access the variable that time we do not

use the column, so it displays the above message. Example: id instead of id:.3' Sex is not a memb-er of employee. In this l.ogturn, we are using the column with everyvariables when. we define the template of struituie and when we access the variable that timewe do not use the colu^mn, so it displays the above message. Example: sex instead of sex:4' age is not a member of employee. tn tttir program, we arJusing the column with every variableswhen we define the template of structure and when we access the variable that time we do not
use the column, so it displays the above message. Exampre: age instead of age:Warning: emp is assigned a value that is never used.

ExERcIsEs

2.

Predict the
struct student
{ char name[20];

:-nt rollno;
l s1, *ptr, s t10l;print.f ("\n ?d"sizeof (s1));

prlntf ("\ntdttsiz.eof tnrrr \.
Prlntf ("\n ?O'is-;;;;;i;; i ;'

main ()
{

struct {
inf i.
-.'v

L,

1 *^+ - .
) }/LL,

(&*ptr)-+1 : 10;
printf (u?alu, ptr -+i) ;
]

3. main ()
{ struct a

{ j-nt i;
I.

strucE a a;
a. i = 100;
printf(utdu, a.i)i

)

struct abc
{ j-nti;
t.
main ()

{ int abc : 20i
^!*,i^r -L^ 6

'D L! UU L A!9 lll ,

m. i : 200;
printf ('tdu,m.i)i
nrin+f t /n\n9^tr rl-,a\,
P!f,rlL!ll \lltq tauvl,

]

5. un10n
{

unaon
I ahrr

char
) cari
union
{ int

1nt
] abci
ffoat
) pqr;

ai

Jt
k;

zi

B.
printf (uEdu , sizeof (par)) ;

Proqramming exercises

3.

4.

Write a proglam to accept student data-name, roll numbers and marks of 3 subjects. Calculate

the total and affange these records in descending order of marks.

Accept book details of 'n' books viz., book title, author, publisher and cost. Assign an accession

numbers to each book in increasing order. Display these details as

i. Books of a specific author
ii. Books by a specific publisher
iii. All books costing Rs. 500 and above

iv. Information about a particular book (accept the title)
v. All books
The above five should be options for the user.

Write a program to store information about 'n' employees. The details are :

name, emp_id, designation(M-Man'ager, D-Director, W-worker, details (for director-years of
experience, for manager-name of the department, for worker-his specializations viz., electrician,

mechanic, draftsman, etc.)
Use a menu to display details of: i. All directors ii. All managers iii. All workers
Read cricket player information - Name, Player Type and Score. The score depends on Player type.
If batsman- store batting average .If bowler store no. of wickets
If wicketkeeper - store no of stumpings
Display the name of batsman, bowler and wicketkeeper with best performance

5. Read names and addresses using a structure and rearrange the data in alphabetical order of

names and displaY.

Review questions

How is a structure declared and initialized? Give an example.

How is a union declared? Can it be initialized? Explain.

Define: i. Structure ii. Union

What are the differences between a structure and a union? Illustrate with an example.

How can an affay of structure be declared? Can it be initialized? Give an example.

Explain nesting of structures. How can membets of nested structures be accessed?

l.
2.

3.

4.

5.

6.

()'
ut8l01l

ti jititji.ijijS-P.,iilltlii.l{'it}s

rocessor

10. I WFIAT IS A PREPRSEESSOR?

A preprocessor is a program that processes or analyzes the source code file before it is given to the

compiler.

It performs the following tasks:

Replaces trigraph sequences (not covered in this book) by their equivalents. Trigraph sequences

are used to handle non ASCII character sets.

Joins any lines that end with a backslash character into a single line.

Divides the program into a stream of tokens.

Remove comments, replacing them by a single space.

Processes preprocessor directives and expands macros.

Replaces escape sequences by their equivalent internal representation.

. Concatenates adjacent constant character strings.

10rl (jo
utSl0ll

ffi cProgramming ' cpreprocessor Q-z

modified/
expanded

code

10.2

Figure 10.1

PREPROCESSOR DI RECTIVES
Preprocessor directives are special instructions for the preprocessor.

They begin with a # which must be the first non-space character on the line.
They do not end with a semicolon.

Each preprocessing directive must be on its own line.

Preprocessor directives come under three categories

Macro substitution directive

File inclusion directive

Conditional compilation directive

t0.2. I Macro Substitution Directive
A macro is a small subprogram which contains executable code and is similar to a function.

Wherever a tnacro name occurs in a program the preprocessor substitutes the code of the macro at that
position (unlike a function). The execution is faster since time is not wasted in function call and return.

i. Simple substitution macro
#define macro_id value

#define is a preprocessor directive that defines an identifier and a value that is substituted for
the identifier each time it is encountered in the source file.

We have already used this directive to define symbolic constants.

a,

b.

u,{l;, cProgr"^*irg . cP,"p,o"""ro, W
The identifier is usually written in uppercase to distinguish it from other variables.

o I second #define for the same identifier is erroneous unless the second value is exactly
identical to the first.

o Use of macros enhances readability of the program.

Examples

1. #define PI 3.142

2. #define TRUE I
3. #define AND &&
4. #define LESSTHAN <

5. #define GREET printf ("HeIlo") ;

6. #define MESSAGE "welcome Lo C"

7. #define INRANGE (a >= 60 && a<70)

Every occurrence of the macro-id in the program will be replaced by its corresponding value.

Example: inta=50;
if (INRANGE)

printf ("First class") i

ii. Argumented Macros

An argumented macro is also called a function macro. The macroname can have arguments.

Each time the macroname is encountered, the arguments associated with it are replaced by the

actual arguments found in the program.

Advantages

a. Their arguments are not type sensitive. Therefore we can pass any numeric variable type

to an argumented macro that expects a numeric argument.

b. Argumented macros execute much fasier as compared to their corresponding functions.

Example

1. #define HALFoF (x) ((x) /2)
result : HALFOF(10);

The occurrence of HALFOF is replaced by

Result = ((10 /2));

The reason for enclosing x in () is that the parameter could also be an expression in
which case, the expression has to be first evaluated. If it is not enclosed in (), it may yield

. wrong results.

Example: result : HALFOF (lQ+21;

This will be evaluated as

resulr = ((10+21/2]};

Thus giving the correct result. If no brackets are used, it would evaluate to

result = (10+2/21;

thereby giving the wrong result.

#define LARGER(x, y) ((x)> (y) ? (x) : (y))

All the parameters of the macro must be used in the substitution value, i.e.,

#define ADD (x, y, z) ((x) + (y))

is invalid because Z is not used. The correct macro is

#define ADD(x.y,z) ((x)+(y)+(z))

4. #define SeUARE (x) ((x) * (x))

5. #define STREQL(s1, s2) (strcmp((sl), (s2)==6y

if (STREQL (strL, srr2)

iii. Nested Macros

A ltracrtt name can be contained within another lnacro. This is called nestins of macros.

F).rample': #def ine CUBE (x) (SQUARE (x)* (x))

#define MAX(a,b, c) LARGER(LARGER(a.b),c)

Macros versus Functions

i. Macros are small and do not usually extend beyond one line. They are used when the code is
relatively short.

ii. Since the macro is replaced by its code, if a macro occurs many times, the final program
contains the expanded code of all the macros; thereby increasing program size.

In contrast, a function code appears only once. A function has space advantage over a macro.
iii. When a function is called, a certain amount of processing is required to pass control to the

function code and return control back to the calling program. This takes a finite amount of time.

This does not occur for a macro because the macrocode is put into the program. Therefore, a macro
has a speed advaniage over a function.

,0.2.7 File Inclusion Directive
The file inclusion directive is the one that begins with #include. We have already used this

directive a number of times.

This directive instructs the compiler to include thc specif ied file, i.e., it replaces the entire contents
ot the file at that position.

2.

3.

Syntax: #include<fi.l-ename>

OR

#include"filename"
r [n the first format, the file is searched in standard directories only'

o ln the record, the file is first searched in the current directory. If it is not found there, the search

continues in the standard directories.

. Any external file-containing user defined functions, macro definitions etc. can be included.

o An inclucled file can include other files'

Example

/* group .h * /
#include<stdio. h>
#include<math. h>
#incfude "myfile.c"
#define PI 3.I42

/*mai nnrnd n */

4t *^t,,!^ //^e^aa^ hrttlllru!uus vr vul,.

main ()

t

;

I0.2.3 Compiler Control Directives / Conditional Compilation

Several directives allow compilation of selective portions of the program's code if certain

conditions are met. These are:

i. #if
ii. #else

iii. #elif
iv. #endif

They work similar to the if else s[atement in C. The different formats in which they can be used are

as follows:

: 4r r ^.,*-^^-'I. fj-l expressron
s tatement-bl ock ;

#endi f
ii. #if expression

statement blockl;
#el- se

statement-b1ock2 ;
endi f

iii. #if expression
s tatement_block 1- ;

#eIif expression
statement _bLock2;

#eIif expression
staLement*bIock3;

#eIse
default statement_block;

#endif

If the constant expression is true, the statement block is compiled otherwise it is skipped and goes
to the #else part (if it exists).

Examples

1. #def ine MAX 1-0

main ()

{ #if MAX>99
/* Code for larger array * /

#el-se
,/* Code for smaller arrav * /

#endi f
]

2. #if BAcKGRoUND::S
#define FOREGROUND 1-

#el-if BACKGROUND::8
#define FOREGROUND 0

#endif

Another method for conditional compilation is the use of #ifdefl #ifndef.

#ifdef means if defined and #ifndef means if not defined.

In case of a large C program, many macros are defined in various files so it is difficult to remember
if a particular macro has been defined or not.

In such a case we can check for its definition usins the above fwo macros.

Redefining an existing macro is erroneous.

Un-defining a non existent macro is also elroneous.

So the definition of a macro has to be first checked for.

The syntax is
{if,.tof mrnrn iA

s Latement_bl ock;
#endif

#ifnrlof m:nrn iA

s t atement_bI ock ;
{and i f

a

a

EmmpIe: finclude "declare.h"
#ifndef FLAG

#define FLAG 1

#endif

Un-defining a Macro

A macro can be undefined using the # undef directive'

Example: #ifdef FLAG

#undef FLAG

#define FLAG 0

ll^*i i ffgllua!

#ifdef and #endif can be used to compile and run debugging code in the program.

Example: #define DEBUG l-

main ()

{_

#ifdef DEBUG

/* debugging code Put here *,/

#endif

!

Another important use of conditional compilation directive is when a program has to be run on

different machines. ln such a case, the common part of program can be run and the machine dependent

progftlm part can be conditionally compiled as shown below.

main ()

l *ifdaf TRM-P.
L n +-vv-

i code for IBM-Pc)

#el-se

{ code for HP machine }

#endif)

W c Progr" ^irg . c Pr"pro""""o, na,,
SOLVED PROGRAMS
l. What will be the output of the following programs? Give the explanation.

i. #de,ftne DAtI(x,y)
Votd nalno
{

(x)>(y)? (:): (y)

J, k);

tnti-70rJ=9rk
K = Iftil(t**r +*J);
pstntf("8d*dtd.r t.
getcb0;

Ans

This program displays the following output:

11 1111

kt this program first we define the macro MAN. This macro takes two arguments. According to
the value of argument they update the value of argument.

e.g.,weinitializedthevalueofi=10andj=gandwearecheckingthevaluesofxandy. Ifxis
greater than y it returns the updated value of x otherwise it return updated value of y.

ii. #defina seE) x*x
deflne cB(r) sQE) * 3
r.al,n() t
tnt a, b, ci
a-4;
b = SQft + a);
c = CB(b + +);
pstntf("a = *d b e *d c - ltdr, E, b, c);

Ans

a=4
b = r*a* ++a llmacro SQ is executed for b. Value of a wilt become 5 then 6. Final value 6 will
be considered.

b=6*6=36
b=36

c = b++*SQ(b++)//macro within macro concept is used. MacroSQ is called within macro CB.

c = b++*b++*b++ (b=37 then b=38 then b=39 so final value b=39 will be considered)

c_39*39*39=5g3tg

printf will print 6 39 59319

Output=63959319

iii. #def ine lee (a, b, c) avg (a, b, c) <=60

#define des(a,b,c,d) (d= =1 ? geq(a,b,c) i 'laa/r h n\\
-vv \et u, v, ,

void main (void)
{

int num = '70i

char ch = tOt;
ffoat f = 2.0;

if des(num, ch, f | 0) puts(ttleet')i
else puts l tf gegrt) i

)

Ans

avg is a function which is not defined here.

So the correct code is

int avg(int a,int brint c)
{

return (a+b+c) /3;
)

#deflne lee(arbrc) avg(a,b,c)<=69
#define des(a,b,c,d) (d:=1 ? geq(arb,c):lee(a,b,c))

void main (void)
i
;*. *,.* - ?n.rllU llulrl - tVt

char ch = r0r;
float f = 2.0;
if (des (num, ch, f ,0))

puts(f'}ee")1
else
puts (ttgeqtt) i
]
//des,geg, Lee are macros.

des is called with parameters

num=70,ch='0'(ch=48 ASCII vaLue of zero is taken),f=2.0 and 0(zero)
so
a:]O, b=48r c=2 . 0, d=0.
dl-L so lee will be executed with parameters(a,b,c)

lee will call average function

a+b+c/3
='10+48+2.0/3
=120/3*40
Lee will give answer 40 < 60. So des will print string lee

Output: lee

ffi c"'og"tt'hn t cP,"0,o""""o,. ,,r/'

ExeRcrsEs
A. Predict the output

2.

#deflne GREAT "xyz"
main ()

{ printf (GREAT) ;
]

#define GREET HELLO
main ()

{ printf (GREET) ;
]

main ()

{ #include <stdio.h>
)

#define MAIN main ()
Sdof i na RE'r:TNI J

I

#dof i na E'Nln 1t

#def i nc GREtrT nr i nt f (/'llc'l 1 6rt I

MAIN
BEGIN

GREET;
END

#define SQUARE (x) (x*x)
maln ()

{ int i = 20, j=10,k;
k : SQUARE(r-j)
nrinl-f lttgAu V\.

\ ev t r\/ ,

)

#define SQUARE (x) (x) * (x)
maj-n ()
{ int i = 20,j:10,k;

k : SQUARE (i-j) ;
nrinf€l't9^A,t V\.\ ev , r:/ t

]

#define FLAG
#ifdef FLAG

_ LW,

#endi f
main ()

J in+ i -
q..

I +rru t - Jt
nrin+F IttgAtt :\.I/tfrrLr\ os ,Lll

i

3.

4.

5.

,t{l;r CProgramming . CPreprocessor ffi

B.

/* F11e abc.h */
printf ("HeIIo")

1

/* F1Ie my.c * /
main ()

{ #include "abc.h"
printf ("C") i

]

/* File xxx.h */
printf ("HeI1o")

/* F1le my.c * /
main ()

{ #include "xxx.h"

nr i nf F l "f " \ .
ts!frre! \ v | |

)

Review questions

Write a note on the C Preprocessor.

Explain Macro substitution in brief with examples.

When an argumented macro is defined, why should each argument be enclosed in parenthesis?

Do header files need to have a .h extension?

Illustrate the use of #ifdef and #undef with examples.

Explain any four preprocessor directives.

ifiibt{t;sii

C Programming C Preprocessor

(?'
ulSr0rl

File Hqndlin

I I.I INTRODUCTION
All the input, ouiput fun:tions that we have seen so far are console oriented VO functions.

However, most applications rcquire a large amount of data. If this data has to be entered through the

standard input device, it is time consuming and moreover, once the execution is over, the data is lost.

We may also require a program's output for later use.

Therefore, data can be stored on the disk and read whenever required. Similarly, the output of a

progmm may also be stored in files.

There are many file VO functions provided in the C library. But before we go into the details of file

handling, it is important to know something about 'Streams ip C'.

I I.2 STREAMS
e All C input/output is done with streams, no matter where the input is coming from and no

matter where it is going to.

r I stream is a sequence of bytes of data. A sequence of bytes flowing into a program is an input

sffeam, and the one flowing out is an output stream.

o 'Ihe use of streams makes VO device independent.

11 r 1

Predefined Streams
There are 5 predefinecl streams, which are automatically opened

and are closed when the program terminates.
when a C program starts executing

E'tample: Theoutputof afunciionlikeprintf o orput.so goestothestrearnst.dout. Thescanf () receives its input from stream stdin.
A stream is associatecl with a file. For every disk file, that the program uses, a stream associatedwith that file has to be created.

I t.3 TYPES OF FILES
Streams are of two types - text and binary. Either type of sfeam can be associated with a file.Hence, we can have two types of files: Text and Binarv.

Difference between Text and B inary Modes
i' Text files consist of a sequence of characters organized into lines and terminated by one or morecharacters that signal end-of-line. The maximur tin" length is 255 characters.

In binary files, all data is written and read with no interpretation and separation. All bytes ofdata are considered the same.
ii' A character translation may take place in text files. Thus, the number of characters read orwritten may not be the same as thoie stored on the external device. For example, the c new-linecharacter is converted into a carriage Return-Line Feed combination and stored in the file.when data is read from the file, the cR-LF combination is translated to a ,\n,.

In binary files, there is a one-to-one conespondence between the bytes read and the bytesstored, i.e., no character translation will occur.
iii' In text' files, ASCII0xIA is considered as end-of file character. No special character indicatorsare there in binary files. The end-of-file is detected from the numbei of bytes in the directoryentry of rhe file.
iv' In a text file, characters are stored one byte per character. Even numeric data is stored this way,i.e., one byte per digit of the number.

In binary files' acharacter occupies I byte, integer 2 bytes and float 4 bytes. Thus they occupysame amount of disk space as memory space.

Standard input device (opened for input)
Standard output device (opened for output)
Standard error output device (opened for output)

Standard printer (opened printer for output)

Standard auxiliary device (opened for input and
output)

Serial Port
(coMl)

* sttpported onlt under DOS

",(*;
C Programming c File Handling W

I1.4 OPERATIONS ON A FILE
C provicles various tunctions to handle files. These functions are to

Open a filc
Rcad clatl liom a file
Writc dltir to ir I'ile

Close a I'ilc
Detect cnd-ol-filc

Before we learrr nll'c about these functions. it is essential to know about the File Pointer.

The File Pointer

A file pointer is a pointer variable of type FILE, which is defined in stdio.h. The type FILE defines
various properties abrlut the llle including its name, status and current position.

Basically a file pointc:r identifies a specific disk file. This pointer is used by the stream associated
with it to tell the I/O iunctions where to perform the operations.

I t.4. I Defining and Opening a File

If we want to store data in a file in the secondary memory, we must specify certain things about the
file to the operating system. They include:

i. Filename
ii. Data structurr'

iii. Purpose

Filename is a string of characters that makes up a valid filename for the operating system. It may
contain two parts, a primary name and an optional period with the extension. For example: Employee,
C, input, data, PROG.C etc.

Data structure of a file is defined as FILE in the library of standard UO function definitions.
Therefore, all flles should be declared as type FILE before they are used. FILE is a defined data type.
The process of opening of a stream for use and linking a disk file to it is called opening a file.

When we open a file, we must specify what we want to do with file. For example: we may write
data to the file or read the already existing data.

Following is the generalformat for declaring and opening afile:

A, FILE *fP;
' fp : fopen ("fiLename", "mode"); OR

b. FILE *fopen(const char *filename, const char *mode);

The first statement declares the variable fp as a "pointer to the data type FILE". As stated earlier,
FILE is a structure that is defined in the I/O library. The second statement opens the file named
filename and assigns an identifier to the FILE type pointer fp. This pointer which contains all the
information about the file is subsequently used as communication link between the system and the
program.

().
C Programming File Handling

The second statement also specifies the purpose of opening this file' The

can be one of the following:

mode does this job. Mode

I

Note: The default mode is text. The character t can also be used along with the specified characters to

indicate a text file, i.e., "rt", "w + t".

To open a file in binary mode, 'b' has to be appended to the specified modes'

i.e,, "rb" "wb"

Example
FILE *fPtr; /* declares fptr as a pointer to type FILE 'kl

fptr = fopen("in.txtu, uru)'

The file pointer fptr is to be used in all subsequent fead/write operations on the file in'txt'

| 1.4.2 Closing a File

After the operations on the file have been performed and it is no longer needed' the file has to be

closedusing the f close O function'

o It ensures that all information associated with the file is flushed out of buffers'

o Ptevents accidental misuse of the flle'

o It is necessary to close a file before it can be reopened in a different mode'

PrototYPe: int fcl-ose(FILE *fP) i

Example: fclose (fPtr) ;

we can also close all open streams (except the predefined ones) by using the fcloseall() function'

PrototYPe: int fclosealI (void) ;

| 1.4.3 End-of-file

If we know exactly how long a file is, there is no need to detect the end of file' However' in many

cases, we do not know how big the file is. So its necessary to detect end of file' This can be done in

two ways:

i. In text files, a special character EOF (defined in stdio'h, value-l) denotes the end of file' As

soon as this character is read, the end-of-file can be detected.

ii. In binary files, the EOF is not there. Instead we can use the library function feof() which

returns TRUE if encl of file is reached. It can be used for text files as well.

Prototype:

Example

L if(feof(fPtr):= 1)
printf ("File has ended") i

2. vrhile(!feof (fPtr))

]

3. Write a program that reads the information of the employee

(name, age, city, salary) and store into employee'dat file' Also

find the highest salary paid employee (Use structure/union)'

j-nt feof (FILE *fP) ;

.ffi
-

ffiffi*""iffit*'**ffi
fffi il.+-"='-

F*ffit*ffi;'
:- +.'"Fllfrfrrig:rlffi

EHtffiffij#ililt#
,rji,iiiiiiiffi+

il**'i$ ffi* *ffiffi---
ffiffiffi ffffi

It
irlxi

,;;: irr;i

I t.4.4 Reading and Writing File Data
File I/O operations can be performed in three ways:

i' Character/string inpuVoutput to read/write characters or line of characters. Although itspossible to do this with binary files, these operations are commonly used with text fileJonly.
Functions: fgetc, fputc, fgets, fputs, getw, putw

ii' Formatted Vo to rcad/wfite formatted data. This can only be used with text mode files.
F un c t i o n s : fp r intf, fs c anf

iii' Direct input/output to read or write blocks of data directly. This method is used only for binary
files. Functions: fread, fwrite

i. Reading and Writing Characters
a' getc() and fgetc(): Both are identical (getc is a macro, fgetc is a function) and are used

to input (read) a single character from the specified stream.

Prototype: int getc(FrLE "fp);
They return a single character. When used with the stream stdin, they input a character
fror.n the keyboard.

Exampl.e:
"5 = getc (fptr) ;
ch = getc(stdin);

b. putc() and fputc(): Both are used to write a single character to the specified stream. If
the stream is stdout, they display it in the standard output device.
Prototype: int purc(int ch, FILE *fp);

,(fi c Prosrammins . Fite Handting W
E-r'ttmltlc: c:frar ch : 'A' ;

putc (ch, fptr) ;

fputc (ch, stdin) ;

c. fgets(): It reads a line of characters from a file.

Prototype: clrar 'Ig+Ls (char *srr, int n, FILE *f p);
o str points to the string where the read string has to be stored.

. n is the maximum number of characters to be read. Characters are read until a new
line is encountered or (n-l) characters have been read whichever occurs first.

Exarnple: char name [80] ;
fgets (name,80, fptr);

d. fputs(): Writes a line of characters to a stream. It does not add a new-line to the end
of the string. If it is required, then the new line has to be explicitly put.

Prototype: char fputs(char xstrr, FrLE *fp);

Example: char city [] : "Pune't,i
fputs(crty, fpt-r);

e. getw: It reads an integer from a file.

Prototype: int gelw (FILE *fp) ;

ExantPle:
i''l l!.* (rpLr) ;

f. putw: Writes an integer to a stream.

Prototype: putw(int n , FILE *fp);

Example: int num : 10;
putw (num, fptr) ;

We shall now see an example using the above functions. The task is to accept characters fiom
the keyboard till user enters EOF and store them in a file. These characters are then read from
the file and displayed on the screen. The number of characlers is also displaycd.

Note: The above two functions are not defined in the ANSI C standard and hence may uot be

portable.

1. /x Reads characters from keyboard, stores them in a file and displays from the file */

Write a C program to read a text file and copy all contents
of that file into another file. When you copy the contents
the source file content the words "and", "i.e.", and ,'e.g."
are replaced with "&", "that is" and "for example"
respectively.

{h
urStotl

C Programming File Handling

'1f (,ch , !* ,,i',.,,,1:.':"f,fi.j:4$.':;ll'+....l$'-p,,F.j.t#,S1,1Q|.*;;ii.+,*,.r;\"{i,i,.!l'1
...i.., . ,

l: ; ,: ',,
,,,,i",:

::i r;rliiil,

I
1o, r*, ;,,n'fi,i,;,,..l;;.11,';11i'.4li1,ll'il.,,;'l',,11tJ,,,,,','

' i;, :i;l i;il''ll lt*jttt1't'''1,,'l i'

"1, ,', ,1 ;;;;;,|;";.;i;ri.i..,......'l.1;iL.i.,i.ilr1...r,ii..:,,,,,,.''',.'jil,i'

) il;;1";,ilil:;;,, , ..i;.il; i ,. ,.".,.i, ,'
.'rt..1..',

flse
if tu*i;*e1t;t*;.+.*;,t.;'ti,1;+* Ir'''

.,,,.,,,,, f,pf intf,{ fpZ:. $Aglt t:1!:.gha.t,rii,6'l I. t1; lilli-liir.il,.i't',,...',.',,

niil
.lrr:

.: ,.l

3. Write a program to disptay frequency of each character in

a given file.

cnai 'f *anre,! 11) , ch; ::

,, ir .'i

i. ilinil-ltilll, :l ;,; ., i ;; J;ll ;, 1-''.'*l;,'.;;';o
,. ,or*,' "o9i" tzsst,; r t*ill,rA:*;ir'ai;cc;i i" u'fiv
...o;i-.,('i\ntn;;r;"-];'iJJifffJl;"i,='....'.
, 'sCanf (11 t"sd'r f nsme) ;

I ,,,ipifop*n tr,n**ei; r'tri 1;:''

,,i,,r",''*ri;;i;;ii'.l' r',

'., ,if !,f,e==Np.tx) . ., ii,,,,:.,,r
"i...,.

,'l ,..,.

:
l"H:flllt.uit.'

aoes, not' exist

iot,i i*o ; i<2551 i*+ l t '.
'

n

l,ii r"'.':,, i = , '
.. .,t

t. '-ll,ilr:.il+

,,a!.r:.'.::ti.

:!,...1.::,i)11!

::::,::ial

', .1, . '.'
I

.....1.i11.i'.i'""''l.*u.*"'*n'*....,.".'.:.-=*-.=i'.'..1"l''l..1i.-.:*i.i.l...]....l

. ,1.;$l.;#;i;uiii+$f;, ;;;il;;;,;i;;ilf".i,
','-=1.

"

'','". ti
,-tun,t'i,,---fiffiHiltff#lfflffi.=il-ffi

uutl;r C Programming . Fite Handting W
ii. Formatted File Input / Output Functions

The functions seen above can handle only single data types. In order to deal with multiple data
types, formatted file UO functions are used. fprintf O is used for outpr.rt anci f scanf () is
used for input.

a. fprintf: This is similar to printf except that a pointer to a file nrust be specified. Data
is written to the file associated with the pointer.

Prototype: int fprintf(FILE *fp, char *format, argumentlist);
The frlrmat string is the same as used for printf .

The argument lists are the names of variables to be output to the specified stream.

Example: char name[] = rrABCD",

int age : 20;
float amount = 1005.75;
fprintf (fptr, 'r%s%dEf", namef d9€, amounc);

b. fscanf: This is similar to scanf except that input comes from a specified stream instead
of stdin.
int fscanf(FILE *fp, char *format, addresslist);
The format string is the same as used for scanf. The address list contains the addresses of
the variables where fscanf() is to assign the values.

Example: fscanf (fptr, "%s%d%f", name, &age, &amount) i

Program: /* Illustrates fprintf and fscanf */

W C Programming File Handling (,),
|ltGrnr

iii. Direct File Input /Output
This is used only with binary-mode files. It is used to read or write blocks of data.

i. fwrite: This function writes a block of data from mernory to a binary mode file.

Prototype: int fwrite (void *buf, int size, int countf FILE *fp) ;

o buf is a pointer to the region of memory which holds the data to be written to the
file.

o size specifies the size in bytes of individual data items.
e count specifies the number of items to be written.

ExunpLe

To write a single float variable x to a file, the statement will be.

fwrite (&x/ s Lzeof (fIoat), 1. fptr) ;

To write a 100 element integer array n to the file,

fwrite (n, sizeof (int) , 100, fptr) ;

ii. fread: It reads a block of data from binary-mode file and assigns it to the region of
memory specified..It returns the number of values read.

Prototype: int fread(void *buf, int size, int counr, FILE *fp);
s buf is the pointer to memory that would receive data read from the file (i.e., it is the

address of the variable).

o size specifies the size, in bytes of individual data items being read.

o count specifies the number of items to be read.

Examples

1. fread(&num, sizeof (1nt). L,fpl;
This reads an integer from the file and assigns it to num. If we have a structure variable
emp and its members have to be read from the file, fread can be used.

fread (&emp, sizeof (emp; , 1, fp) ;

iril,,,',,' =, fl*ft$fiE#g$ffi rffii"ii* t,t
;lffiixffil'*u"t'*..$.tl.$.#*$,

';-*'-+ri -##+fiffffiffi
#ffi +-"it : rt++*i[ffiff;,##fiffi***6;i]'--'
'r+itiiffili+'*#*u#i'i##f#ffff#ffi.ri';1"'1'' ":'{ ffi;f####ffi iJi,,,"'

, ',
" '

#*=***ff***#i*f;{#++ ffil-#+#
':liirij;.j,liriitrt,

i rp*,ij

2. /* Illustrates fread and fwrite to store and read employee information from a
file */

| 1.4.5 Other Functions

i. fflush: This causes the buffer associated with an open output stream to be written to the

specified file.

If it is an input stream, its buffer contents are cleared'

Syntax: fflush (FILE *fP) ;
E:eample: f f lush (stdin) ;

C Programming File Handling

ii' remove: This deletes the file specified. If it is open, be sure to close it before removins it.
Syntax: int remove(consl char *filename);
Exatnple: remove ("my.txt r') ;

iii. rename: This function changes the name of an existing disk file.
syntax: int rename(const char *or-dname/ const char *newname);
Both files must be in the same disk drive.

Example: rename (t,c: \my. txtr,, ,,c: \mynew, txt,,) ;

I I.5 ERROR HANDLING DURING I/O OPERATIONS
It is possible that an effor may occur during vo operations on a flle. Typical error situationsinclude, ' ,v'vq'

i. Trying to read beyond the end_of_file mark.
ii. Device overflow.
iii. Trying to use a file that has not been opened.
iv' Trying to perform an operation on a file, when the file is opened for another type of operation.v. Opening a file with an invalid filename.
vi. Attempting to write a write_protected file.

If we fail to check such read and write errors, a program may behave abnormally when an erroroccurs' An unchecked error may result in a premature termination of a program or incorrect output. Soto handle this situation, we have two status - inquiry library functions. feof (as already seen) and ferror
that can help us detect VO errors in the files.

The feof function can be used to test for an end of file condition. It takes a FILE pointer as its onlyargument and returns a non-zeto integer value if all the data from the specified file has been reacl, &returns zero otherwise. If fp is a pointer to a file that has just been opened for reading, then thestatement,

if (feof (fp))

Printf ("End of data. \n") ;

would display the message "End of data" on reaching the end of file condition. The ferror function
reports the status of the file indicated. It also takes a FILE pointer as its argument and returns a
non-zero integer if an error has been detected up to that point, during processing. otherwise, it retums
zero. The statement

i-f (ferror (fp) I : O)

prrntf ("An error has <;ccurred \n,,) ;

would print the error message, if the reading is not successful.

Ur l;n C Progranming c Fite Handting
- W

We know tlutt wltcncve:r a I'ilc is opened usine fopen function, a file pointer is retulnecl. If the tlle
cann()t l"re' ope'ttcd lirr sotttc rcls()n. thcn the function returns a NULL pointer. This lac:ility can be used
to test whcthcl'lr l'ilcr hus bccn openecl or not. For exatnple:

if (fp - NIl l)
pritll[("\rr I''i],' ,',,1.t1.1 It6t.]te operredlt) 1

The litllowilUl pr()srant illustrltes the use of the NUI-L pointef test ancl l'eol' ftrnction. When we
input lilenanrc ls Rcsult. the li.rncrtion call

f open ("P.esrtl.t ", "L ") ;

returns a NULL poitttcr bccitttse the tile Result does not exist and thc:re lirrc lhc nrcssrqe "C-'annot

open the file" is prirrtecl out.

Similarly the call feof (fp2) retums non zero integer when the entire clatu h:rs berc-n read, and
hence the program pdnts the messase "Ran out of data" and ternrirurtcs tirrthcr rclrcling.

Program: Illustrates error handling in file operations.

fr:,1;iF'.srdio
h> '

,

.r#;;I'iffi;lur,*i,
..",,,.','

"''
"'

i#ilffiff::Tl. l"t,
i

,,,,,,i!!ff;ifr,*|,;.' rri.;;i;,,,,' i
", 'I.ir*'iFJ,r'"* i;:;

, i',:;;;,,::tffi*: :l''
**''

,,, Siri;);;::;. I:i:,:J;;";:, f irL*,**r ;qi,ii:i)l;1,

,, l 'noto "t-*tt:':i,,.,,,. ,,.,",.t., t
.:i 'lt

'"'r'''-;" 'i'llpg;T,;ffilt'- "i , "
,r ::r .l

.:r . r, ., l:,,,.1'i,i:.
pr intfi(':i1t,n
bieak; ,,,,,,t i',

J ::: .l: .: : :

a: i: :::: ::1 :

, eISe...;.,,:,',',' " '. .,.:,:,::;,

t
'e;intf i" aorn':i,;

rcrose\!p7ti , ,

*J.,,'.*u lt q.ia,, t;,1t, ;"'

nuinber),i:

W - c rry^,rins *_' r,b u"naling
ur(k

I t.6 RANDOM ACCESS TO FILES
Every open file has a position pointer or a position indicator associated with it. This indicates the

position where read and write operation takes place.

In all earlier programs, we read the file sequentially. However, C provides functions to control the
position pointer by means of which data can be read from or written to any position in the file. These
functions are:

i. ftell: This function is used to determine the current location of the position pointer.

Prototype: long frell (FILE nfp) ;

It returns a long integer that gives the cunent pointer position in bytes from the start of the file.
(i.e., it gives the offset in bytes the beginning of the file). The beginning of the file is considered
at position 0.

Example: fp : fopen("in.txt't), "r")i
printf ("%ldtr, ftelf (fp)) ;

Here the output will be 0, because when a file is opened, the position pointer points to the
beginning of the file.

ii. rewind: This function sets the position pointer to the beginning of the file.
Prototype: void rewind(FILE *fp);

This function can be used if we have read some data from a file and want to start readins from
the beginning of the file, without closing and reopening the file.

Example: rewind (f p) ;
prlntf (u%ldtr, ftell (fp)) ;

This will yield 0 since rewind positions the pointer to the start of the file.

iii. fseek: More precise control over the position pointer is possible using fseek. The function fseek
allows the pointer to be set to any position in the file.

Prototype: fseek(FILE *fp, long offset, int origin);
r offset indicates the distance in bytes that the position pointer has to be moved by

o origin indicates the reference point in the file with respect to which the pointer is moved
offset number of bytes.

There can be three values for origin with symbolic constants defined in stdio.h

i:V'Stiril

SEEK SET U Moves the position pointer offset bytes from beginning of file.

SEEK_CUR 1 Moves the position pointer offset bytes lrom its current position.

SEEK END z Moves the position pointer offset bytes from the end of the tile.

Example

I f<aaL /fnfr n ^r-zroEs^ \rpL!, U, Jl5l1n_trNUr;

This positions the pointer to the end of the file.

2.

3.

4.

5.

C Programming File Handling

ct rrlif afihraa

{_

)rec;
If file contains four records of struct emprec as shown:

recl rec2 rec3 rec4fp -+

fseek (fp, 2* sizeof (struct emprec) , SEEK-SET) ;

This positions the pointer to the beginning of rec3.

fread (&rec, sizeof (struct emprec) , fp) ;

will read the third record.

fseek (fp, -sizeof (struct emprec) ' SEEK END) ;

will position the pointer to the beginning of the 4u record.

fseek (fp, -2*sizeof ('struct emprec), SEEK-CUR) ;

will now position it to the start of the second record.

ftell can be used with fseek to find the size of the file.

fseek (fp,0, SEEK-END) i
printf ('t1dtr, fte1l (fp)) ;

This will display the size of the file in bytes.

Note:O, I and 2 cat, be uscC in place of SEEK-SET,SEEK-CUR and SEEK-END respectively.
However, the use of sr'rrbotir, oonstants makes the program more readable.

SOLVED PROBLEMS
1. Accept a filename from the user and write a C program to

replace all vowels in a given file with'*'.

C Programming

not ex1$b:,.tJ.;

File Handling

t1.ti ,i -' :
-- :-ll::r-.i -jil II{.i:'i Tri'.:ili:r,l:i*jrj' .i

:,
rr :,rlf,'f;:;i:friiru:;;i;,' ," ;;.; ;;;;l;"r ;;;i;;;;; r ',,.'"1i,.':'

.ili',.. ''i',;;;;1, *,i;i.'.i-'
: -,,i

,,- ,

-*'*
, .-

I '-,li-,-,
-,t,i--=**

,-:1- .

,:::::.li'::::::."d!F..'.'U'iiii.'.'ip'.t.t.t'".'.-.|..1'.'$n'itJ.lni;-4;;tt,,r,..j3
.':..'.11::...1::::::."a"F:]'..Ul.iiiiiilIpii't'llI..t..+o,,.'j1.....o'*u+.'.',.i'z*f;T.'...'..''o*'5;.t...:'|'b*t.[:i"1','o;

t'
fal ncar'! 1 /.\ '
;v*vgvF+4

1 /
'

2. Write a program to count no. of sentences in given file.

ll'}:+u*I.*:fll3jlf,i,. ',
:i,:,

j

"1j;',..,rnri*;rlli.l;;;';..
,,' ,.,,,,.'.

l',' , ,,, ,,.,.:

fii tilriri *f; ililiiiiffi ffi iff " t
;",e ;;

eCan,4,1 it gs'! i fname i, ;

whiJ-e [1]
{

, eh:f SetC (fp,},;

C Programming File Handling

til,; liiiiiili ii (ch;*EeF) break:i
.i,i,i1111,:'.:i|i:)....ti.1i.'.'i::9';h[;'.')i++;7,71f.!ii9ix:]::l,$$

,1,,i,,,,1'1 .,,.,,..... ,':...: ,.
'''',1:':,,':,i:i',',:,

rlr,i',irtrIFtf { t'\n Number of sentence:b*&dt ' I.),i',
', ;;i ,

,1;i,,,.:lcroseal.lo; rl "r:'r

3. What will be the outputs? Give explanation.
char myData o 7;
FIW *TP;
f,P = f,oPen ('t' . "tty-t!7e") ;
fscanf("Hete't a numbet td" t myData);
pd.ntf ('ttd", myData) I

Ans

In the fp = fopen ("r", "My-File"); statement displays two errors:

i. Cannot convert Char * to FILE*.
ii. Type mismatch in parameters.

.

Because the syntax of fopen0 function is wrong. It takes the file name first and the mode of file,
but in program file, mode is mentioned and then file name.

ExERCISES
A. Programming exercises

1. A file named DATA contains integers. Read this file and copy all even numbers into a file
named EVEN and all odd numbers in the file named ODD.

2. Accept three file names as command line arguments. First two contain roll numbers and names.

The roll numbers are in ascending orders. Merge these two into the third file such that the third
file still remains sorted on Roll number.

3. Read a file source.txt which has data in uppercase. Convert it to lowercase and store it into
target.txt.

4. Read a file and encrypt the file using command line arguments.

For example, c:\> ENCRYPT filename

5. Write a menu driven program to manipulate employee data in a file-Employee.dat. The details

to be stored are: Employee id, Employee name, Employee designation, age, basic salary. The
menu should consist of the following options;

i. Add a record

iv. Modify a record

6. Write a program to accept
source file to target file.

7 . Write a program to read a file and count the number of lines, tabs and characters in the file.

ii. Delete a record iii. View all record

v. Exit

two filenames as command line arguments and copy the contents of

C Programming File Handling

B. Review

What are streams? List the five streams that are automatically opened when a program runs?
Differentiate between text and binary files.
Illustrate how a character can be written to and read from a file?
Explain the following functions with examples

fprintf ii. fscanf iii. fread iv. fwrite

1.

)
3.

4.

).
6.

7.

What is the use of the fseek function?
What are the different modes in which a file can be opened?
Explain ftell and rewind functions.

Q,
ul$t0rl

Bitwise O erqlors

l2,l INTRODUCTION
The C language offers some bit-wise operators for manipulation of bits. In this chapter, we shall

study them in greater detail and se€ some of the important applications of these operators.

The six bit-wise operators ale:

One's complement
Risht shift

Left Shift

& Bitwise AND

I Bitwise OR

Bitwise XOR

These operators operate on integer and character but not on float and double. [.et us revise these

operators again in brief.

Bitwise Operator
The bitwise AND, OR and XOR work according to the following rules:

12o1 (/o
uU0rl

C Programming . Bitwise Operators

Examples

1. Assume that a and b are integers with values 13 and 7 respectively. Assuming that an integer
occupies Zbytes,

ainbinary = 0000 0000 0000 1101

b in binary = 0000 0000 0000 0111

a &b = 0000 0000

alb = 0000 0000

a^b = 0000 0000

Using the bitwise operator add two
(without using + operator).

cris+" i),i
i^r i.*# +i.'f::iti\;i
F* dr. * J: t :: ::f {ai

eeang t."*C

0000 0101

0000 1111

0000 1010

positive integer numbers

;;r;s-g'1ir**r i
qei,ch'{ },}, , .

neturn..0,i,,i

Shift Operators
The bit pattern of the data can be shifted by a specified number of positions to the left or right

rusing the left shift (<<) and right shift (>>) operators respectively.

When the data is shifted left, the trailing empty spaces are filled with zeros.

Sirnilariy, the leading empty spaces are zero filled when data bits are shitted right.

C Programming Bitwise Operators

Example: a = 0000 0000 0000 I l0l
a<<3 = 0000 0000 0000 1000

\/
zero filled spaces

a>>3 = 0000 0000 0000 0001

(The rightmost three bits drop off)

The general syntax is:

^h^r-h^1 rla j €+ ^na1-rl. ar araranA) ,vPs! qIruI DlIl r u_vIJs vysr qrru4 /

Note: Shifting by one position to ieft is effectively multiplying the operand by two.

Shifting right by one position divides the operand by two.

One's Complement Operator
The - operator yields the one's complement of an integer, that is, it inverts each hit of the operand

(1 to 0 and vice versa).

Exnmple: If a=0000
-& = 1111

Precedence: - is along with
associativity.

(/u

0000 0000 1101

1111 1111 0010

other unary operators like ++

,2.2

12.2.1

- and ! in hierarchy with R -+ L

APPLICATIONS

Masking

Masking is a process by which only the required part of the data is
retained and the rest is masked. The masking can be done by using birwise operators to extract some
portions of the data.

The most common mask used is thb AND mask by using the & operator.

Example

l. An integer is stored as 16 bits. If we require only the last eight
bits of the data, the data can be ANDed with the following
tmaskt:

0000 0000 l1lllltl
Thus, the first 8 bits of the result will be 0 (since the data bits are

eisht bits will be the data bits.
ANDed with 0) and the last

mask

1000 0010 1001 r110

0000 0000 1111 1111

0000 0000 1001 1110

3.

C Programming o Bifwise Operators

Thus, the portion to be retained has to be ANDed with 1 and the portion to be masked off has to
be ANDed with 0.

Displaying the binary equivalent of an integer, i.e., display the integer bit-wise.

In order to do this, we have to start from the most significant bit (MSB) which is the leftmost bir
(Position 15) and check if it is 0 or 1 and display it.-Next we have to consider the second MSB {
and so on till it reach the Ofr bit (leaset signifiiant bit).

In order to do so we will have to use a mask such that its bit at the position under consideration
is 1 and the rest are 0. For example, when we are considering the MSB of the data, the MSB of
the mask should be set to 1 and rest 0. For the 2nd MSB, the I has to be shifted one position to
the right.

Thus, each bit of the data can be considered by successively shifting the mask one position to
the right till it becomes 0.

To find out if the data bit is 1 or 0, ANDing the mask with the data will give 0 if the data bit is 0
and non-zero if the data bit is 1.

/r'Displays an integer bit wise */

Output
Enter the two numbers :

65535 in binary is:
32768 in binary is :

65535 32768

1111111111111111

1000000000000000

Masking can also be used for manipulation of hexadecimal numbers. 4 bits make up a
.nibble' and each nibble is represented in hex by 0-9 or A-F. Individual nibbles can be

extracted and manipulated by using the masking method.

To extract the second nibble from the left of the hexadecimal number 0xA3B1, the mask used

will be 0x0F00

i.e.,0xA3B1 1010 0011 1011 0001

A3BI
mask0x0F00 0000 1111 0000 0000

0F00
&. 0000 0011 0000 0000

0300
/* Illustrates masking with hexadecimal integers. This program interchanges the first and

second nibble (from LSB) and masks the rest */

Output
Enter the hexadecimal number: 3A2F

The result is F2.

| 2.2.2 Internal Representation of Date
A date is internally stored in memory as an unsigned integer (16 bits) in the following format.

Y v v v v v v m m m m d d d d d

year

--|+--
month J<-- day

DoS converts the actual date to this 2-byte form using the conversion.

512 * year + 32 * month + day

For example, if the date is 1 1-01 -8 1, the converted date will be

512 * 81 +32* I + 11 =41515, which will be sroredas

In order to extract information about the year, month and day, left and right shift operators have to
be used.

To obtain

i. day : shift data left by 11 birs followed by right shift by 11 bits.
ii. month : shift left by 7 and rhen shift righr by 12

iii. year : shift right by 9.

Program: /* Illustrates conversion of date to bit format */

'Iffi

101112131415

I
I 0 0 0 1 0 0 n

1 n
1 n

1

Year month day

*r{l& C Programming ' Bitwise aperarors W
Output

Enter the date, month and year -dd mm yy :

Day = 31

0000000000011111

Month = 12

0000000000001 100

Year = 89

000000000101 1001

3r 12 89

| 2.3 BIT FI ELDS

When storage space is limited, it may be necessary to pack several objects into a single memory

word.

Some applications require data with very small values. Here too, we can pack information into the

bits of a byte or a word if we do not need to use the entire word to represent data.

Example: We use flags to represent Boolean TRUE or FALSE, i.e., I or 0. These can be

represented in a single bit. However declaring them as a char or int will use 8 bits and 16 bits

respectively.

A method to define a structure of packed information is known as a bit field. The syntax of

definition and access is based on structures.

Emmple: In order to store the values of flags, fl, f2, and f3, an integer whose range is from 1 to 12

and an integer_count wttose value ranges from 0 to 500, the assignments could be

f3t2f1

<-1 bit *X- 4 bits ---*- 9 bits
eacft

The bit field declaration will be

----*------)

struct data
{ unsigned int

rrn<i anarl i nie^.v4Y.rve -..v

rrn c i anod i ni

unsigned int
unsigned int

) d1;

Il . a,

an,rnf . O '. ',

The individual members can be accessed as d1.f1, d1.f2, etc.

Initialization

The variable dl can be initialized as

struct data

{_

) d1 : {0,L,I,10,2501'

This assigns

dl.fl = 0

dl.fZ = |

dl.R = 1

dl.fn = 10

dl.count = ,250

SOLVED PROGRAM

Write a 'C' program to convert a decimal number in its binary format using bitwise operators.

ExeRctsEs
A. Predict the output

1. main ()

I rrninn l-'l-rh I
t s..4vrr vlv,

{ st rrrr:t
int a:1;
1nt b:1;
intc:Ii
in+ A . 1.

. L,

lnte:Ii
intfz!i
.in+ a . '1.rrrL Y . L,

inthz!;
) aaa;

char x;
rrninn l.rhl.r nr--* Ylt i
Pqr.aaa.a = pgr.aaa.b:
pqr.aaa.e = PQr.aaa.f =
pri-ntf ("\d" , pqr. x) ,]

rrogrammrng exercrses

Write a function rightrot (x,m) which rotates integer x right by m position and retums the result.

Write a function leftrot (x,m) which rotates bits of integer x to the left by m position.

Write a program to accept a hexadecimal number and reverse the nibbles of the numbet, i.e.,

3,4,25 should be reversedto 52A3.

Accept a hexadecimal number and a nibble number (1,2,3 ot 4). Convert the number such that

only the specified nibble is inverted and all others remain the same.

Write a function setbits (x,m,y) that returns x with its leftmost m bits set to the right most m bits
of y.

Write a program to find the number of bits required for storing a character, integer and long
integer without using the sizeof() operator.

Write a program to convert an integer into its equivalent binary number using bitwise operators.

Hint: use masking.

Review questions

What is masking? Explain giving an example.

What are bit fields?

How is date internally stored? Show the format.

Explain the bitwise operators giving examples.

pgr. aaa. c
pqr . aaa. g

= pqr.aaa.d : 1;
: pqr.aaa.h = 1;

B.

1.

2.

?

4.

ffi C Programming Bitwise Operators ('k
ulttor

(?,
ulSl0ll

Grq hics ln C

I

l.

13. I INTRODUCTION
So far we have limited ourselves to text input and output. However in order to make the output

'look' better or to design an application which uses images, shapes, etc. we have to use graphics. All
computer games, animation, multimedia applications extensively use graphics.

In this chapter, we shall be studying some basic graphics concepts and see the use of simple
graphics functions in the C languages.

3.2 BASIC CONCEPTS
Graphics.h, Graphics.lib: Graphics.h is a header file that contains the definitions of constants
and prototypes of graphics functions.

Graphics.lib is a library file, which contains function definitions.

Graphics mode: In order to use graphics in the program, a user has to switch from the default
'text' mode to the graphics mode. There are various modes depending upon the monitor used and
the display adapter.

Automatic selection of a mode can be done by the standard function initgraph(),
iii. Resolution: The display screen (for graphics) is divided into number 'dots'called pixels. The

more the pixels the clearer is the image.

The total numbers of pixels on the screen in the graphics is called the resolution.

13r1 (),
utflotl

u.

ffi ""'on'"tt'n ' u'"on''"t" ,,'n'

Example: The Video Graphics Anay (VGA) adapter provides a maximum resolution 640x480
pixels in 16 colours.

640 480
(maxx, maxy)

initgraph(): This standard library function selects the graphics mode offering the best
resolution and stores the corresponding mode number in the variable gm.

Graphics drivers: Device drivers are programs, which communicate with specific devices. A
program communicates with these drivers, which in tum communicate with various devices.

Graphics drivers are device drivers applicable only in the graphics mode. Turbo C offers many
graphics derivers (with extension BGI). One of them has to be selected depending upon the
adapter used.

DETECT macro: DETECT is a predefined macro which does the task of selecting the
appropriate graphics driver. This value has to be stored into a variable for further use (gd).

Exiting the graphics mode: The graphics mode can be exited by using the closegraph()
function. This function deallocates the memory allocated to various graphics objects and exits
the graphics mode.

viii. Restoring the text mode: The function restorecrtmode() can be used to restore the screen
mode to the settings prior to the graphics settings.

Simple Graphics Program
To enter the graphics mode, display the text "Welcome to Graphics" in the center of the screen and

then exit the graphics mode.

lv.

v.

vl.

vu.

i,'i
iliiii;:,i

i. getmaxx() and getmaxy() are functions which retum the maximum x and y cool
respectively in the current screen mode.

ii. outtextxy is a function which displays text at the specified x and y coordinates on screen.

maximum x and v coordinates

C Programmlng o Graphics in C

| 3.3 DRAWTNG SIMPLE GRAPHICS OBTECTS

| 3.3. I Drawing a Line

Method l: Using the lineO functlon

Syntax: void line(int x1, int y1-, int x2, int y2)

It draws a line in the current colour using the current line style and thickness, between the two

points (xl, yl) and(x2, y2) without updating the current position (CP).

Example: x = getmaxxO;
y = getmaxyo;

line (0' 0' x, Y)

Method 2: Using movetoO and linetoo

The cp can be changed to a specific position using moveto() and the lineto() function can be used

to draw a line from the no to a specified position.

After lineto() the cp changes to the end point of the line.

Example

moveto(200, 50), /*change C.P. to (200, 50) */
lineto(200, 150), /* draws a line from (200,50) to (200,150) */

Method 3: Using linerel()
This function draws a line relative to the c.p. The cp can be

moverel() functions. The c.p. is advanced by the specified offsets

Syntax: void linerel(int dx, int dY);

Exarnple: moveto (200, 50),
l-inerel (0,100) ;

changed using either moveto() or

C Programming Graphics in C

| 3.3.2 Setting Line Style
Lines of different styles can be drawn by using the setlirrestyle() function followed by anydrawing function.

syntax: setlinestyle(int. rlnestyle, unsigned upat.tern, int. thickness)
The linestyles enumerated in graphics.h are:

0 Solid Line
1 Dotted Line
2 Center Line (Alternate dots and dashes)
3 Dashed Line
4 User-defined line

The second parameter is applicable only if the first is user-defined.

The thickness parameter can take values from 1 to 3.

Example: setl j_nestyle (3 , L5 , 1-) ;
line (0,0,200, 150) ;

| 3.3.3 Drawing a Rectangle
The rectangle() function draws a rectangle in the current line style, thickness and colour. It doesnot fill the rectangle.

Syntax: void rectangle(int l_eft, 1nt
Example: rectangle (100, 50, 200, 100) ;

(100,59

(200,100)

13.3.4 Drawing a Circle
The circle() function is used to draw a circle with specified center and radius.
Syntax: void circle(int x, inr y, j_nt radius)
Example: x = getmaxxO;

y : getmaxy0;
circ]-e(x/2, y/2, l-5),

top, int right, int bottom)

. ():, C programming o Graphics in C ffi,ut8t0il ffirw
Frogram: Write a C program to display the following output:

| 3.3.5 Drawing an Ellipse

The ellipse() function can be used to draw an elliptical arc in the current thickness and colour. The
linestyle does not affect the ellipse.

Syntax: void ellipse(int x, int y, int startangle, int endangle,
int xradius, int yradius)

. centre of ellipse - (x,y)

. x radius and y radius are the horizontal and vertical axes respectively.

Example: ellipse(x/2, y/2, 0,360, 100, 50);

13.3.6 Drawing an Arc
The arc function draws an arc from a specific start angle to end angle with respect to a specified

centre and with a given radius.

Syntax: void arc(int xc, int yc, int startangle, int endangle, int rad);

Example: x: getmaxxO;
, y: getmaxyoi

arc(x/2, y/2, 0, 90, 100),

C Programming Graphics in C

| 3.3.7 Drawing Polygons
A polygon with n vertices can be drawn using the drawpoly function.

Syntax: void drawpoly(int num, int * polypolnts);
This function draws a polygon with num-l vertices using the cuffent linestyle, thickness and

colour. Polypoints points to an affay of num *2 integers. Each pair of integers gives the x and y
coordinates of a vertex. Coordinates of (num) vertices have to be given where the coordinates of first
vefiex matches co-ordinates of numfr vertex.

Example

int coords [] = {100, 100, 200, I00,200,150, 150, 200,i,00,1"50, l-00, 100} ;
drawpoly (6, coords) ;

(100,1 .100)

(100,150) (200,150)

| 3.3.8 Filling lmages
The setfillstyle function is used to set a fill pattern and colour. There are many predefined fill styles

as shown in the table.

ffi;ialHtfiiF,it.r jt? iif,ffii*ilr.. iiii#iii jlrp*uil ffi fi iii
L,i,r:

i r i
EMPTY-FILL 0 Fill with background colour

SOLID FILL {
I Solid fill

LINE_FILL 2 Fillwith --

LTSLASH_FILL 3 Fillwith ///l
SLASH FILL 4 Fill with ////,thick lines

BKSLASH_FILL E Fill with \\\\. thick lines

LTBKSLASH FILL 6 Fillwith \\\\
HATCH-FILL 7 Light hatch fill

XHATCH FILL 8 Heavy cross-hatch fill

INTERLEAVE FILL o Interleaving line fill

WIDE-DOT_FILL 10 Widely spaced dot lill

CLOSE_DOT-FILL 11 Closely spaced dot fill

USER-FILL 12 User-defined fill pattern

Syntax: void setfillstyle(int pattern, int col_our)i

(150,200)

The colour parameters can take a value from 0 to 15. A user can also specify the colour name

instead of its integer value.

Example: setfillstyle (4'MAGENTA) ;
bar (100, 100' 200, 200t i
rectangle(L00, 100, 200, 200),

Note: The bar function is similar to rectangle but it does not draw the boundary but fills the inside

whereas the rectangle function does not fill the inside.

t3.3.9 Pattern with a Difference

The setfillpattern() is like setfillstyle(), except that you use it to set a user-defined 8x8 pattem

rather than a predefined pattern.

The setfill pattern function is used to select a user defined fill pattern.

Syntax: setfillpat.tern(char * pattern, int colour)

The first parameter is a pointer to a sequence of 8 byles, with each byte colresponding to 8 pixels

in the pattern. Wheneuer a 6it in a pattem byte is set to 1, the corresponding pixel will be plotted. The

second parameter specifies the colour in which the patiern would be drawn.

| 3.3. l0 Setting Colours

The setcolour function is used to set a specific drawing colour.

Syntax: void setcolor(int color);
The color parameter can take a value from 0 to 15 (as shown in table below). The current color is

used to draw graphics and output text.

BLACK 0

BLUE 1

GREEN 2

CYAN 3

RED 4

MAGENTA 5

BROWN 6

LIGHT GRAY 7

DARK GRAY 8

LIGHT BLUE I
LIGHT GREEN 10

LIGHT CYAN 11

LIGHT HED 12

LIGHT MAGENTA 13

YELLOW 14

WHITE 15

Example: setcolour (wHrTE)
cLrct.e (x/ 2, Y / 2,' 1"00) ;

I
C Programming Graphics in C

| 3.3. | | Setting Background Colours
The setbkcolour function is used to set the current background colour using the palette.

Syntax: void setbkcolor(int color) ;

The colour parameter can take a value from 0 to 15. If you use EGA (Enhanced Graphics Adaptr:r)
or a VGA (Video Graphics Anay) and you change the palette colours using setpaleue() or
setallpalette(). The color value you use might not give you the correct color. This is because thc
parameter to setbkcolor() indicates the entry number in the current palette rather than a specific color.

| 3.3. | 2 Setting Palette Colours
The setpalette function is used to change one palette colour.

Syntax: vold setpalette(int colornum., int color);
Setpalette() changes the colournum entry in the palette to colour. The valid colours depend on the

cuffent graphics driver and current graphics mode. The setallpatette function is used to change all
palette colours.

Syntax: void setallpalette(struct palettet.ype * palarte);
The setallpalette() function sets the current palette to the values gives in the palettetype structure

pointed to by palette.

You can partially or completely change the colours in the EGA/VGA palette with setallpalette().

The MAXCOLORS constant and the prototype structure used by setallpalette() are

#define MAXCOLORS 15
struct palettetype
{ rrnqianarl nhrr srze i

signed char colors[MAXCOLORS + 1];];
Size gives the number of colours in the palette for the current graphics driver in the current mode.

Colours is an array of size bytes containing the actual row colour numbers for each entry in the
palette. If an element of colours is - 1 , the palette colour for that entry is not changed.

| 3.3. | 3 Filling regular and non regular shapes
To fill regular shapes like polygons and ellipses there exist standard library functions like fillpoly()

and fiUellipse(). These functions fill the polygon or ellipse with the current fill style and current fill
colour that may have been set up by calling setfillsryle() or setfillpattern().
i. fillpoly(): The fillpoly() function draws and fills a polygon.

Syntax: void fillpoly(int num, 1nt *polypoints);
fillpoly() draws the outline of a polygon with num points in the current line style and colour
and then fills the polygon using the current fill pattern and fill colour, polypoints points to a
sequence of (num * 2) integers. Each pair of integers gives the x and y coordinates of a point on
the polygon.

ur(^ C Progr"rrirg . Gr"phio in C W
ii. fillellipse(): The fillellipse() function draws and fills an ellipse.

Syntax: void filleltipse(int x, i-nt y, int xrad, int yrad);

fillellipse() draws an ellipse using (x, y) as a center point and xrad and yrad as the horizontal
and vertical axes and fills it with the current fill colour and fill pattern.

To fill non-regular shapes like the in0eresting area between an overlapping traingle and circle
the floodfill() function is used repeatedly.

floodfill(): The floodfill() function flood-fills the bounded region.

Syntax: void floodfill(int x, int y, int border)i

(x, y) is a 'seed' point within the enclosed area to be filled. The area bounded by the colour
border is flooded with the current fill pattern and fill colour.

13.4 OUTPUTTING TEXT
There are various functions in graphics.h which are used to display text and change text settings.

r3.4. t outtextxyO and outtexto
The outtextxy() function displays a string at the specified location using the current

settings(ustification, colour direction, font and size)

Syntax: void outtextxy(int x, int y, char *s);

Example: x: getmaxxO;
y : getmaxyo,
out.t.extxy(x/2, y/2, "He11o'r) ;

The outtext () function is similar to the above but it displays the string at the current position (c.p.)

Syntax: void outtext (char *s);

Example: out.text ("HeIIo") i

t3.4.2 Changing Text Setting
The settextstyle function allows setting chnracteristics for text output. It sets

fgnt

text direction

character size

Syntax: void settextstyle(int font, int direction, int charsize);
font can take a value from 0 to 4

Direction can Lake a value from 0 to 1.

Charsize can take a value from 0 to 7.

1V.

v.

vi.

Symbolic Name I Value

HOR|T_DIR I o

VERT-DIR I I

Example: for (i=0; i<=1 0; i++)

{ settextstyle (i, HORIZ_DfR, 2) ;outtextxy (xry, trDEMO") i
x += 20i
y a= 20; I

13.4.3 Text Justification
we can also control the justification (positioning) the iext with respect to the C.p. Thesettextjustify() function can be used for this purpose.

Syntax: void settextjustify(int horLz, int vert);
The standard values are:

The default values are LEFT_TEXT (for horiz) and rop_LEFT (for verrical)
Example: settextjustify (!, l) ;

outtext (ttText Demo") ;

13,4.4 Finding text height and width
The textheight and textwidth functions rehrrns the height and width of a string in pixels.
Syntax: int textheight(char *s);

int textwidth(char *s) ;
Example: char st.r [] : "Demo,?;for(j = 1; j< = 4; j++)

{ settextstyle (2. HORIZ_DIR, l) ;outtextxy(x,y, str);
V + = (texrheight(str) + 10) ;X * = (rextwidth(str) + 10);)

BOTTOM-TEXT

():' C Programming t GraPhics in C WutSf0ff _ *_**__w-

SOLVED PROGRAMS
l. Write a function to display a bar graph for the runs per over.

, Write a program to demonstrate fill color in circle.

I

ExERCIgES
Programming exercises

Write a program to draw a rectangle in the centre of the screen and fill it with att ttre nttrwt*.;
and ail colours.
Write a program to display 3 rectangles such that they occupy the screen diagonal as shown.
Calculate the height and width of the rectansles,

B. Review

l.
2.

3.
A

Deflne the following tenns: cp, Resolution, pixel.
What do you mean by graph driver and graph mode?
Explain the purpose of initgraph() and the DETECT macro.
Explain the following furrctions giving their syntax, usage and example.
i. rectangie ii. circle iii. arc iv. ellipse
Which are the various functions that can be usecl to draw a line.
How can line settings be changed?
How can polygons be drawn and filled'7
Explain different functions for outputting text.

5.

6.

8.

(]*
utSt0ll

Commond Line Ar umenls

l4.l INTRODUCTION
So far we have been using main with an empty pair of parenthesis. In

environments that suppolt C, there is a way to pass arguments or parameters

to main when it begins executing, i.e., at runtime.

These arguments are called command line arguments because they are

passed from the command line during run time.

main is called with two arguments:

int argc: argument count which is
called or invoked with.

char * argv[]: Argument vector.
argument.

ll.

the number of command line arguments the program was

It is an array of pointers each pointing to a command line

Declaration of main

When main has to accept command line arguments, it has to be declared differently. It is declared

AS

main(int argc, char *argv[]
)

{_

i. The subscripts for argv[] are 0 to argc-l.

ii. argv[0] is the name of the executable file of the program.

14r1 (/u,
ut8l0tl

iv.

It is not necessary to use the words argc and argv and any others will also do. However, they are
used conventionally, so it is better to stick to them.
The arguments have to be separated by white spaces. If a space is to be given as a part ol':rrr
argument, the argument along with the spaces can be specified in double quotes.

Exarnples

l. A simple program is the program display which echoes its command line argurnents on the
screen. If the command is given as
Display argumentl l-0 abcd
The output should be
ar.nrmcnrl 1O abcd
For this example argc = 4 and the arguments will be stored as:

argv[0]

argv[1]

argv[2]

argv[3]

argv[4]

Figure 14. 1

argv

ur?ri, C Programming o Command Line Arguments ffi
| 4.2 ADVANTAGES OF COMMAND LINE ARGUMENTS
i. Arguments can be supplied during runtime. Therefore the program can accept different

arguments at different times.

ii. There is no need to change the source code to work with different inputs to the program.

Example: If a program is to be written without using command line arguments for copying the

contents of one file to another, both filenames will have to be specified in the program.

By using command line arguments, the program can be run with different file names every time

since the code in the program will refer to them using argv[].

iii. Therejs no need to recompile the program since the source code is not changed"

A user can specify file names as command line arguments and the program can perform operations

on the specified file.

The same program can be used for different files since the filenames will be supplied at runtirne.

Example as follows

A program to copy the contents of one file to another can be run for different source and target files
since the program accepts them as command line arguments.

The following program illustrates copying one file to another. The filenames are accepted as

command line argurnents.

Filecopy using command line arguments.

To run this program if the following arguments are given at the command line.

filecopy in.txt out.txt

W C Programming Command Linei Arouments (),
ut$0rl

T'hey will be stored as

argv[0]

argv[l]

argv[2]

filecopy

in.txt

out.txt

Note: A program, which uses command line arguments, can be executed as follows:

i. By selecting the "Arguments" option from the menu bar and then specifying the arguments.

ii. From the DOS prompt. An executable program has to be first created and then the file name

along with the arguments can be given at the system prompt.

(For the above examples, filecopy.exe has to be created first)

SOLVED PROGRAMS

1. Encrypt a.txt 2

Program to accept a filename and a key as command line arguments and encrypt the file
using the key.

f,clocreal} O i

()' C Programming . Command LineArguments Wrtrf0il _ _ _^w
2. I lsing command line accepts source file name and target file

nrnrc. ()opies the all contents of source file into target file and
slve the target file. Your program should handle the errors.

,,1 rr,r

I, rrc Lude < $ tdi.o,;iH>

['I l fr rsf,i
cltar chl,.,,

i.f (argclq*

t

:t: :I :::!:: :t:: i i:sf ,;*,
':n. i.:'i ; A
+# ltYi{;
i::ii:i:t::.iti:i:lt:artiii.

,!t:,]l

' ; l: ..: .,.i.::

- . t t .:::;:;r::!
r ctos6 t ,3r l :rj :- : :'.: :':

. .; ;i t,TCJOSE(TII'

t,t:':tt:.)":.:::ti:i::itt::;:iiitittttl

:i|.i:ii

C Programming Cammand Line Arguments (,)"
utst0tl

HxERcxsEs
A. Programming exercises

1. Accept three file names as comnund line arguments.

First two contain ro11 numbers and names. The roll numbers are in ascending orders. Merge
these two into the third file such that fhe third file still remains solted on roll number.

2. WAP to accept the filenames as command line arguments, concatenate contents of second file to
tirst and store in the third.

3. WAP to display the cornrnand line arguments with the maximum number of characters.

B. Review questions

1. Is it necessary to use tire words argc and argv to store Command Line Arguments?

2. What are the Command Line Arguments?

3. What are the advantages of Command Line Arguments?

4. What is the significance of argv[0]?

Q"
ur$1011

Suggestive Readings:

1. [Ritchie,1993] Ritchie, D. The development of the C language. ACM Sigplan Notices.

28, 201-208 (1993)

2. [Kernighan Ritchie,1978] Kernighan, B. & Ritchie, D. The C Programming Language

Prentice Hall. Englewood Cliffs, New Jersey. (1978)

3. [Balasubramanian,2016] Balasubramanian, S. A brief history of the C programming

language. International Journal of Computer Applications. (2016)

4. [Alexander,2019] Alexander, M. The advantages of learning C programming.

(educba,2019), https://www.educba.com/advantages-of-learning-C-programming/

5. [Doyle,2013] Doyle, B. C Programming: From Problem Analysis to Program Design.

(Cengage Learning,2013)

6. [Donovan,2019] Donovan, B. A brief history of C. (IEEE Computer Society,2019)

7. [Ghezzi, et. al.,2018] Ghezzi, C., Jazayeri, M. & Mandrioli, D. Fundamentals of

software engi-neering. (Prentice-Hall, Inc.,1991)

	da9753d12e6132b5c506ecae1c8145b216a2799ab418ebc4dc9764fe7daf6018.pdf
	736d24d2d81781b934b419857c134391101ba6fe473b4404afdccf5f3c3d4581.pdf
	Microsoft Word - Syllabus C Pr
	2d4ef1ecd13e05e3c52979983ecbde11a957082aa9ea78c77fcaaa42d6cb66e7.pdf
	Microsoft Word - C Programming BCA SEM-2

