SURESH

GYAN VIHAR

Il V E R S I TY
Accredlted by NAAC with ‘A+’ Grade

Bachelor of Computer Application
(B.C.A)

C Programming
Semester-11

Author- Poonam Ponde

SURESH GYAN VIHAR UNIVERSITY

Centre for Distance and Online Education
Mahal, Jagatpura, Jaipur-302025

EDITORIAL BOARD (CDOE, SGVU)

Dr (Prof.) T.K. Jain Dr. Manish Dwivedi

Director, CDOE, SGVU Associate Professor é“Dy, Director,
CDOE, SGVU

Dr. Dev Brat Gupta

Associate Professor (SILS) & Academic Mr. Manvendra Narayan Mishra

Head, CDOE, SGVU Assistant Professor (Deptt. of Mathematics)
SGVU

Ms. Hemlalata Dharendra
Assistant Professor, CDOE, SGVU Ms. Shreya Mathur
Assistant Professor, CDOE, SGVU
Ms. Kapila Bishnoi
Assistant Professor, CDOE, SGVU Mr. Ashphaq Ahmad
Assistant Professor, CDOE, SGVU

Published by:

S. B. Prakashan Pvt. Ltd.

WZ-6, Lajwanti Garden, New Delhi: 110046
Tel.: (011) 28520627 | Ph.: 9205476295

Email: info@sbprakashan.com | Web.: www.sbprakashan.com

© SGVU
All rights reserved.

No part of this book may be reproduced or copied in any form or by any means (graph-
ic, electronic or mechanical, including photocopying, recording, taping, or information
retrieval system) or reproduced on any disc, tape, perforated media or other information
storage device, etc., without the written permission of the publishers.

Every effort has been made to avoid errors or omissions in the publication. In spite of this,
some errors might have crept in. Any mistake, error or discrepancy noted may be brought
to our notice and it shall be taken care of in the next edition. It is notified that neither the
publishers nor the author or seller will be responsible for any damage or loss of any kind,
in any manner, therefrom.

For binding mistakes, misprints or for missing pages, etc., the publishers’ liability is lim-
ited to replacement within one month of purchase by similar edition. All expenses in this
connection are to be borne by the purchaser.

Designed & Graphic by : S. B. Prakashan Pvt. Led.

Printed at :

Syllabus

C Programming

Learning Objectives

1. Write algorithms, flowcharts and programs.

2. Implement different programming constructs and decomposition of problems into
functions.

3. Use and implement data structures like arrays and structures to obtain solutions.

4. Define and use of pointers with simple applications.

Unit 1

Introduction to Computing: Introduction, Art of Programming through Algorithms and
Flowcharts. Overview of C: History and importance of C, Basic structure of C program, executing
a C program. Constants, Variable and Data Types: Introduction, Character Set, C Tokens,
Keywords and Identifiers, Constants, Variables, Data Types, Declaration of Variables, Assigning
Values to Variables, Defining Symbolic Constants. Managing Input and Output Operations:
Reading a Character, Writing a Character, Formatted Input, Formatted Output. Operators and
Expressions: Introduction, Arithmetic Operators, Relational Operators, Logical Operators,
Assignment Operators, Increment and Decrement Operators, Conditional Operator, Bitwise
Operators, Special Operators, Arithmetic Expressions, Evaluation of Expressions, Precedence of
Arithmetic Operators, Type Conversions in Expressions, Operator Precedence and Associativity.

Unit 2

Decision Making and Branching: Introduction, Decision Making with IF Statement, Simple IF
Statement, the IF-ELSE Statement, Nesting of IF-ELSE Statements, The ELSE IF Ladder, The
Switch statement, The?: Operator, The goto statement. Decision Making and Looping:
Introduction, The while Statement, The do statement, The for statement, Jumps in LOOPS.

Unit 3

Arrays: One-dimensional Arrays, Declaration of One-dimensional Arrays, Initialization of One-
dimensional Arrays, Example programs- Bubble sort, Selection sort, Linear search, Binary search,
Two-dimensional Arrays, Declaration of Two-dimensional Arrays, Initialization of Two-
dimensional Arrays, Example programs-Matrix Multiplication, Transpose of a matrix. Character
Arrays and Strings: Declaring and Initializing String Variables, Reading Strings from Terminal,
Writing Strings to Screen, Arithmetic Operations on Characters, String-handling Functions,
Example Programs (with and without using built-in string functions)

Unit 4

User-defined Functions: Need for functions, Elements of User-defined Functions, Definition of
Functions, Return Values and their Types, Function Calls, Function Declaration, Category of

Functions, No Arguments and no Return Values, Arguments but no Return values, Arguments
with Return Values, No Arguments but Returns a Value, Passing Arrays to Functions, Recursion,
The Scope, Visibility and Lifetime of variables. Pointers: Introduction, Declaring Pointer
Variables, Initialization of Pointer variables, accessing a Variable through its Pointer, Pointer
Expressions, Pointer Increments and Scale Factor.

Unit 5

Structures: Introduction, defining a structure, declaring structure variables, accessing structure
members, structure initialization, array of structures. File Management in C: Introduction,
Defining and opening a file, closing a file, Input/output and Error Handling on Files.

Reference

- E. Balaguruswamy, “Programming in ANSI C”, 8th Edition, 2019, McGraw Hill
Education, ISBN: 978-93-5316-513-0.

- Pradip Dey, Manas Ghosh, “Programming in C”, 2nd Edition, 2018, Oxford University
Press, ISBN: 978-01-9949-147-6.

- Kernighan B.W and Dennis M. Ritchie, “The C Programming Language”, 2nd Edition,
2015, Pearson Education India, ISBN: 978-93-3254-944-9.

- Yashavant P. Kanetkar, “Let Us C”, 16th Edition, 2019, BPB Publications, ISBN: 978-
038728-449-4.

- Jacqueline A Jones and Keith Harrow, “Problem Solving with C”, Pearson Education.
ISBN: 978-93-325-3800-9.

- Dr. Guruprasad Nagraj, “C Programming for Problem Solving”, Himalaya Publishing
House. ISBN-978-93-5299-361-1. Weblinks and Video Lectures (e-Resources):

- http://elearning.vtu.ac.in/econtent/courses/video/BS/14CPL16.html

- https://nptel.ac.in/courses/106/105/106105171/

Contents

An Overview Of C

1.1 HISTOTY OF © ..o ettt e s st et et s e st sbb et es et e ts e ee e seetenerteaeneneonan

1.2 Development of ‘'C'....

1.3 Where C Stands?....................

1.4 Program Development CYCIB..........cov oo s

1.5 The FOrm of @ C Program............coecviiiiiriniiier ittt ces vttt

1.6 SrUCIUrE OF @ “C7 PIOGIAM c...c.o.iviiiiieiitcir sttt e ettt sttt naeesss s et e ea s ss st s ss et easse e st st s tste st eneneees

1.7 ComPpilers @Nd INTEIPIEIEIS ..ottt ettt n et er et ss e eas e s tennstareeranen

1.8 EXECUtING A "C PIOGIAM ..ottt ettt ettt sttt sttt st enes e s e e
Variables, Data Types, Operator And Expression 30
21 INEFOTUCTION ...t et et orstat e bt st s bt es et annentrenatenann

22 Character Set

2.3 CTOKEBNS ...ttt et e st e s e s es s e caeat ettt eb ettt bt ae e s s s e reen e et eeeaenen

2.4 Data TYPES N € ..ottt ettt eb bbbttt b e e st n ettt en s e eenneen

25 VariableS......cooocooivoroieieeee e,

26 Data Declarations and Definitions

27 User Defined Type Declaration

28 OPerators And EXPIr@SSIONScocvcvioeeieeievieteee et eeeteee ettt e et eeeeaeteasee e e er s s st eeeeeee et s e sestessres s easenaseaseren

29 TyYPE CONVETSIONS IN EXPIESSIONS.ucvieeiiiiit ettt et eee s e e e e e e e st eeesssteststaseasassseaseassessasesensesersanesean 2-22
210 Precedence and Associativity Of OPEratorscc...cuoveirieeeeeriieeiee ettt ettt eeeee e 2-23
Built In I/O Functions -

31 INEFOGUGCHION ...ttt et ee e or et e et eaeeessererrnsennas

3.2 Unformatted Console I/O OPErations.............cuiiiiiirieciereiiisie i iesesesesssesesss st sssssssss sttt s s stesasessnsaseons

33 Formatted CONSOIE 1O OPEIAtIoNSceevvieieieecectere ettt ettt eeee et ee et et ests et nenesens
Control Statements

41 INtroduGtON ..o

42 Selection / Decisicn Makiny Statements...........

43 Iterative Statements (Loop Control Structure)

4.4 JUMP SEABMBNES ...ttt e e s e e e et e e e st s e eresseeneeseeesnranen

4.5 Compound Statementccccveevveeerererenreerserennan, ettt ettt ettt e e er e

46 NUIESIBIBMIBNL........oooviiiii ettt sttt e et e s st et et eeen e ees e s et
Array And String

5.1 INETOTUCHION ..o st et bbbttt essr st esa s et st a bt b et s bbb tenaast s e et et

52 Array Declaration...............c..........

5.3 One Dimensional Array .

5.4 MuRtidimensional ArTRYS ..o s eevee et ettt et er P 5-8
55 BIIINGS. ..o e ettt e s et s e b et re e et er et enen st st r et renen 5-13
Pointers ' 30
6.1 IMOOUCHON ..ot R st reer et bbb R e RS CeR LR A LR e T e Ryt ey e R et aE s er e Rt e ane 8-1
8.2 Memory Organization

6.3 Basics of Pointers...........

64 Applications of Pointers................ e e

6.5 Using Pointers................ TN e er e e e [RPRTT a-4
es POINtEr EXPrOsSIONovvvrivivm s i, e Fer e ST e s 8o
8,7 Precedence of & AND * opomoru. e sttt n s eeeres avesyenressenersernescrer @91 0
88 POINtOr 10 POIMOI........c.oiviicrninerinesmi s ieestese s PO PP POTPPOPPOOOPPPROTN - M b
LX) Pointers to Constant Objoctu,,.,”,.,. P . PR . L)
8.10 Constant Pointer ... T OO UURRRT TR P, 8-12

C Programming e na23

6.11 Dynamic Memory AlOCALIONcouiiuieer ittt ettt s 6-12

B.12 POINIEIS @NT AITAYSt ueiereeetee ettt ettt et e st e et e et et e aa e e oe s ea b es b ook e eub et s eae s s s b r ek eh ke te e 6-16
6.13 Pointers and Character Stringccoceviniin O OO UPOU TP U U PPRPPP U RRPOPRPO 6-18
B.14 ATTAY OF POINEIS ..ottt ettt et s ettt e 6-19
7. Function 28
71 1T oTe (Fe3{ o 1 OO O T ST U PO OO PO PP PSPPI PPPPIPP P PR 7-1
7.2 WhEtS 8 FUNCHON?. .cco..oiviveiieis et vt 7-1
7.3 Functions and Structured Programmingccoooormiicions et e e et a e aan e creaes 7-2

7.4 How @ FUNCHON WOTKS? ...eooiviiiie e e enne s ST USSP TOTROTO 7-2
7.5 Library and User Defined Functions ... JRE OO R PP PUPRPPPUPPIRPOt 7-3

7.6 Function Declaration and Definition SRRSO SO PROUDSPPUPRPO 7-5
7.7 Writing a Functioncccocine et b e hre e —ee b teeLee e b e reeee e et s et e b et ae s 7-5
7.8 Calling a Function....... S O OO PP PO PPPN 7-7
7.9 Types of Functions BT SR U POV P VPP PPUPPP 7-8
710 Methods Of Passing AFQUMENEScoiiiiiiimieiir ettt b e e 7-10
7.11 Functions with Variable ArGUMENES ..o 7-12
742 Arays and FUNCHONSoouiiiiiiiiiie ettt bbb st b et e s b et a s beea bbb e e r e ane et et a e 7-12
7.13 Pointers and Functions.................. OO PO PSSP TSP PSP PO PP PSPPSR PSPP PO 747
A T T = -1 V1 - o D OO OO ST P PP PRSP PP 7-20

8. Storage Classes And Scope 10
8.1 MEANING OF TEIMS L..eeiiiiiiieiirt et eee e e s e b b b e Lo b e b s e b e s saede bbb Ra b b saab s eE e ettt s 8-1
8.2 L YoTo o1 T PO P PP OOPUPRTURR ST U TURUPUUPPPRPPIN
8.3 Storage Classes .

9. Structure, Union, Enumeration And typedef 24
9.1 SHUCIUIBS et evee s e eee e et e es st et e s a e s e s s et et a8 es s st et e s s s bt s s bee s e be R e et
9.2 Structures and Enumerated Data Type
9.3 UNiON ..o e
9.4 Difference between Structure and UNION ...t s

10. C Preprocessor
10,1 WHAL IS @ PIEPIOCESSOI?o.voeeetseiveeesteeseseesses s s s ssessss st s sesns s s s bses et s s .
10,2 PreproCessOr DIFECHIVESc.co ittt a e sa e e bbb e e e et

11. File Handling ,
T4 IIEFOOUCHON Lutivvieiietiieir et et e et eacesen s e ebansesbeebe e e b e s ser bt e s s e hb e s s e e et s 4a b e ek ek b e s b e e b e be e s eeabaaba e b e e e r e st an e e sbe et
B.2 SIBBIMS...cviiuiiee it ettt et ettt bt s e bt et asee e st e R sh e et s er bRt b4k St S R £ oL e R Lt e A s oA e e te e b e s e b b e R s ea s e
11,3 TYPES OF FIIBS. e ittt e b e e e s
11,4 OPErations ON @ FB ..c...cviouiiie ittt e st eb et e bbb
11.5 Error Handling during IfO Operations............ocoviiiiiiiii i e e
116 RaNAOM ACCESS t0 FlS.......cciiicrviiireirierscii ittt b et

12. Bitwise Operators
T2 IFOGUCTION Lovoiiiies i ectscet st eue s v e sia b asis s e s s es et as ettt s e H0 0404004000 004 R TSR H DL n e bbb e s e a0 0e
D22 ADDUCBHIONS .. coovrirsirirriiraciinborises st ihs a0 a8t b 0010 r bR O LY L O YRR SRR e
T2 BIFIBIIB ...o.voiriorsiivrimsiseeittes s sssitts 0s b ebs 0000000810088 RO BRSSO IR0 prens

13. Graphics InC
181 IMrOAUEHON .ooovvrriiiriiiririicciesisicieieiisrimenrinis s e e e virorvecersnann 18371
13.2 Basic Canr'cpts U vt SOOI I |
18.3 Drawing 8imple Graphics Objam OSSO PP DO I
184 OUtBUINg TEXL......ooovnrviimimsicimierseimssimmmmisserr i enin et crnseere: DSOS k- -

14, Command Line Arguments é

14T ABLUCHON e OO I |

14.2 Advantages cf Command Lino Argumcm e 143

L

C Progremming *20 E42§

The development of C language was a result of the evolution of several languages, which can be

An Overview Of C

HISTORY OF C

called 'the ancestors of C'. These were Algol 60, CPL, BCPL and B.

In the 1960s many computer languages, each for a specific purpose, were developed, for example,

COBOL and FORTRAN. The need was felt for a general purpose language that would suit a variety of
applications. An international committee set for this purpose, designed Algol 60, which eventually led
to the development of C.

i.

ii.

ifi.

iv.

Algol 60 was a modular and structured language but it did not succeed because it was found to
be too abstract and too general.

The Combined Programming Language (CPL) developed at Cambridge University and
University of London in 1963 was a successor of Algol 60.

However it was hard to learn and difficult to implement.

The Basic Combined Programming Language (BCPL) was very close to CPL and developed
by Martin Richards at Cambridge University in 1967. BCPL was too less powerful and too
specific and hence it failed.

The father of C language was the B language developed by Ken Thompson of Bell Laboratories
in 1970. It was designed for an early implementation of UNIX. However, it was machine
dependent and a 'type-less language'. For this reason, Dennis Ritchie began work on a new

language as a successor to B.

1e1 C?@
VISION

C Programming . An Overview of C (e

V. The 'C' programming language by Dennis Ritchie came into existence ‘in 1972 at Bell
Laboratories. The early development and use of C was closely linked with UNIX for which it
was developed. For many years, the only reference available on C was the published informal
description in Kernighan and Ritchie’s book.

In 1983, the American National Standards Institute (ANSI) established a commiittee to provide a
formal comprehensive definition of 'C'. This ANSI standard known as "ANSI C" was completed in
1988. |

Algol 60
(By an International Committee, 1960)

CPL
(At Cambridge and London University, 1963)

I(_- I(_—

BCPL
{Martin Richards at Cambridge University, 1967)

IQ—

(Ken Thompson at Bell Laboratories, 1970)

I(_

(Dennis Ritchie, Bell Labs, 1972)

Figure 1.1: Development of C

1.2 COMPUTER LANGUAGES

Computer languages have evolved over the years from the earliest machine language to the recent
natural languages.

All the programming languages are divided into 3 levels:

i. Low Level Language
ii. High Level Language
iii. Middle Level Language

i. Low Level Languages

These languages were the earliest languages developed. Under this category, we have Machine
and Assembly languages.

o
wision

C Programming . An Overview of C

Features of Low Level Languages

a.

These languages are greatly hardware dependent, i.e., the code had to be written for
specific hardware.

Programs written on one machine will not run on another (non-portable).
Programmers are required to have knowledge about the hardware as well.
Machine Language: Since the computer is made up of electronic circuits, they can only
understand binary logic (0's and 1's). Hence in order to communicate with the computer,

the user has to give instructions in term of 0's and 1's. This was called machine language
and it was one of the earliest computer languages (1940's).

Advantage

Since the computer circuits can directly interpret O and 1, execution of programs is very
fast.

Disadvantages
. Writing programs in binary is very difficult.
. It is very easy to make errors during writing or data entry.

. Debugging is very difficult.
. There is no distinction between the instruction and operands or data.

. It is difficult to understand the program logic by looking at the program.
Symbolic / Assembly Language: These were developed in the 1950’s to remove the
disadvantage of Machine Language. In these languages, small English like words, called

mnemonics were used for instructions (For example: ADD, SUB, etc) and hexadecimal
codes were used for data.

Example: 8085, 8086 languages.

Advantages

. Writing of programs became easier.

. Errors are minimized.

. Identification of errors is easy.

. There is a distinction between instructions and data.

. Programs can be easily understood.

Disadvantages »

L. Because a computer does not understand symbolic language, it has to be translated

to machine language.

2. A special software called Assembler is needed to translate assembly code to
machine code.

3. Execution becomes slower.

C Programming L4 An Overview of C (e

ii. High Level Languages
High level languages were developed to

a. Improve programming efficiency.
b. Shift focus from the computer to problem solving.
c. Develop portable applications.

Features of high level languages

1. Use of English - like words for instructions.

2. Support to multiple data-types like characters, integers, real numbers etc.

3. Hardware independent instruction set (Portability).

4. Programs have to be converted from high-level languages to machine languages.
5. Conversion is done by special Software (Compiler or Interpreter).

Example: Pascal, FORTRAN, COBOL, BASIC, etc.

iii. Middle Level Language

C is thought of as a middle level language because it combines elements of high-level language
with the functionalism of assembly language. C allows manipulation of bits, bytes and
addresses - the basic elements with which the computer functions. Also, C code is very portable,
that is software written on one type of computer can be adapted to work on another type.
Although C has five basic built-in data types, it is not strongly typed language as compared to
high level languages, C permits almost all data type conversions.

It allows direct manipulation of bits, bytes, words, and pointers. Thus, it is ideal for system
level-programming.

1.2.1 'C' - Structured Language

The term block structured language does not apply strictly to C. Technically, a block-structured
language permits procedures and function to be declared inside other procedures or functions. C does
not allow creation of functions, within functions, and therefore cannot formally be called a block-
structured language. However, it is referred to as a structured language because it is similar in many
ways to other structured languages like ALGOL, Pascal and the likes.

C allows compartmentalization of code and data. This is a distinguishing feature of any structured
language. It refers to the ability of a language to section off and hide all information and instructions
necessary to perform a specific task from the rest of the program. Code can be compartmentalized in C
using functions or code blocks. Functions are used to define and code separately, special tasks
required in a program.

This allows programs to be modular. Code block is a logically connected group of program
statements that is treated like a unit. A code block is created by placing a sequence of statements
between opening and closing curly braces.

mgl%;l C Programming . An Overview of C

1.3 WHERE 'C’' STANDS?

The 'C' programming languages is a very powerful and flexible language.

It provides the programmer a facility to write low-level programs as well as high-level programs.
Thus, it is designed to have both~good programming efficiency and good machine efficiency.

For these reasons, C is called a Middle Level Language. It permits machine independent programs
to be written as well as permits close interaction with the hardware.

1.3.1 Application Areas

'C' is a general purpose programming language and not designed for specific application areas like
COBOL (business applications) or FORTRAN (scientific and engineering applications).

'C' is well suited for business as well as scientific applications because it has various features (rich
set of operators, control structures, bit manipulation, etc.) required for these applications.

However it is better suited and widely used for system software like operating systems, compilers,
interpreters, etc. characteristics.

1.3.2 Features of 'C'

In the current scenario there are several languages to choose from. Most are well suited for a
variety of tasks. However, there are several reasons why 'C' is a popular programming language.

i. Flexibility: 'C' is a general purpose language. It can be used for
diverse applications. The language itself places no constraints on the
programmer.

ii. = Powerful: It provides a variety of data types, control-flow
instructions for structured programs and other built-in features.

iii. Small size: 'C' language provides no input/output facilities or file
access. These mechanisms are provided by functions. This helps in
keeping the language small. 'C' has only 32 keywords, which can be
described in a small space and learned quickly.

iv. Modular design: The 'C' code has to be written in functions, which
can be linked with or called in other programs or applications. C
also allows user defined functions to be stored in library files and
linked to other programs.

v. Portability: A 'C' program written for one computer system can be compiled and run on
another with little or no modification. The use of compiler directives to the preprocessor makes
it possible to write a single program that can be used on different types of computers.

vi. High level structured language features: This allows the programmer to concentrate on the
logic flow of the code rather than worry about the hardware instructions.

C Programming . An Overview of C (o
yision

vii. Low level features: 'C' has a close relationship with the assembly language making it easier to
write assembly language code in a ‘C’ program.

viii. Bit Engineering: 'C' provides bit manipulation operators, which are a great advantage over
other languages. '

ix. Use of pointers: This provides for machine independent address arithmetic.

X. Efficiency: A program written in 'C' has development efficiency as well as machine efficient
(i.e., faster to execute).

1.3.3 Limitations of 'C’
The ‘C’ language, however, does have its limitations:

i. . It is not suitable for programming of numerical algorithms since it does not provide suitable

data structures.
it. 'C' does not perform bound checking on arrays. This results in unpredictable errors, which are

difficult to locate.
iii. The order of evaluation of function arguments is not specified by the language.

Example: In the function call, f (i,++i); it is not defined whether the evaluation is left to right or
right to left.

iv. The order in which operators are evaluated is not specified in some cases.

Example: In a[i] = b [i + +], the value of ‘" could be incremented after the assignment or it
could be incremented after b [i] is fetched but before assignment.

The order of evaluation of operands of an operator is also not specified.
Example: Sum = (++a .~ — a). Here it is left to the compiler as to which it evaluates first.

V. ‘C’ is not a strongly typed language, which means that the compiler does not strictly check and
_ indicate errors for those statements that attempt a mismatch of data types.

This can cause unintentional errors, which are difficult to trace.

1.4 PROGRAM DEVELOPMENT CYCLE

The program development cycle is completed in four steps:

i. Creating the 'C' source code
ii. Compiling the source code
iii. Linking the compiled code
iv. Running the executable file

UIS(I{;) C Programming 4 An Overview of C

Standard and User
Defined Libraries

. ceeeeen... re-processed 1' '
W‘ncrgen S : ; b Code | ohrect Execztg:ble
—————3 Editor | reted] Processor i ——>i Compiler | =2EES inker |——>
Program N erecmavaenaas
Creation Linking
Compilation
Figure 1.2
(stat)
DOS UNIX
- Y Editor
Written C
Code > Type the Program
Compiler Source file.c file.c
.Program
N Compilers Source Code :

Edit Program

A 4

Syntax
errors

Yes 4
Object

Program file.obj file.o

.............. > Link Program

programs

‘Executable file.exe a.out
Code

Execute

Yes Logical

Errors?

A

Figure 1.3

C Programming . An Overview of C (o

i. Creating the source code: Any editor or word processor can be used to create the source code.
The file containing the source code has to be a ‘text’ file with an extension .C most compilers
come with a built in editor. On UNIX, the editors like vi, emacs, etc. can be used.

ii. Compiling the source code: The pre-processing is the first step in the compilation. The source
code is given to the pre-procéssor (Pre-processor is a system program that modifies a C program
prior to its compilation) which checks for special instructions (preprocessor directives) in C
program (line beginning with # provides an instruction to the preprocessor) and performs other
tasks to give the pre-processed code.

The compiler then converts this code to binary code (object code). On UNIX systems, the object
code has an extension .O and on others it is .obj.

Several compilers have been developed for C. Some of the commonly used ones are: Microsoft
C, Borland C, Turbo C, GNU C. Programs can also be compiled on UNIX by the CC compiler.

iii. Linking the object code to create an executable code: The object code of the program has to
be linked with the object code of precompiled routines from libraries. The linker creates a file
with .exe extension.

iv. Executing the program: Once the executable file is created, you can run it by typing its name
at the DOS command prompt or through the option provided by the compiler software. If the
desired results are not achieved, changes may have to be made to the source code. When the
source code is changed, it has to be recompiled and linked to create the correct executable code.

1.5 THE FORM OF A C PROGRAM

All C programs will consist of at least one function, but it is usual (when your experience grows) to
write a C program that comprises several functions. The only function that has to be present is the
function called main.

For more advanced programs the main function will act as a controlling function calling other
functions in their turn to do the dirty work! The main function is the first function that is called when
your program executes.

C makes use of only 32 keywords which combine with the formal syntax to form the C
programming language.

Note that all keywords are written in lower case - C, like UNIX, uses upper and lowercase text to
mean different things. If you are not sure what to use then always use lowercase text in writing your C
programs. A keyword may not be used for any other purposes. For example, you cannot have a
variable called auto.

““6"7]@“ C Programming . An Overview of C

1.6 STRUCTURE OF A 'C' PROGRAM

The basic building block of every C program is Function.

A function is nothing but a module or a subprogram, which performs some task. It may accept
some information and may return a single output.

The function main

. Every‘ C program consists of one or more functions one of which is the function called main.

] Program execution begins from this function and ends when the instructions in the main
function have been executed.

. The basic structure of a 'C" program is as shown below:

Documentation Section
Link Section
Definition Section

Global Declaration Section

Function Section
main()

{

Declaration Part
Executable Part

}

Subprogram Section

Function 1
Function 2

- user

: defined
Function n functions

. The documentation section consists of comment lines (enclosed in /*.and */), which are used to
convey program information and other details.

Note: Comments can be put anywhere within the program.
. The link section gives instructions to the compiler to link library files and other user files.
o The definition section defines all symbolic constants.

. Some variables need to be used in all functions. Such variables are declared in the global
declaration section.

. Every C program must have one main() function. It consists of local declaration (information
used only within main) and "C" statements, All statements end with a semicolon,

C Programming . An Overview of C (/o
Vision

. The sub-program section contains all user-defined functions that are called in the main function.

The subprogram section may also appear before main() although it is normally placed
immediately after main(). :

Sample 'C' Program
To display the following message on the screen.
Hello!

Welcome to C

Output

Hello!

Welcome to C

Explanation

1. Line 1 is a'C' comment. A comment is used to give additional information about the program. It
has to be enclosed in /* and */. Comments are ignored by compiler.

Comments can be written anywhere in the program and are used for documentation. They
cannot be written inside one another (nesting).

Example: /* First comment /* Second Comment */ */ is invalid.

ii. Line 2 is a blank line. A program can contain any number of blank lines. This improves
readability of the program.

ili. Line 3 is the link section and it tells the compiler to include information about the specified file,
i.e., Standard Input - Output functions. The #include directive gives the program access to a
library. A library is a collection of useful functions and symbols that may be accessed by a
program.

The ANSI (American National Standards Institute) standard for C requires that certain standard
libraries be provided for every ANSI C implementation. A C system may expand the number of
operations available by supplying additional libraries; an individual programmer can also create
libraries of functions. Each library has a standard header file whose name ends with the
symbols,

The #include directive causes the preprocessor to insert definitions from a standard header file
into a program before compilation.

C Programming e An Overview of C

(o
vision

The directive

#include <stdio.h> /* printf, scanf definitions */ notifies the pieprocesor that some names used
in the program (such as prinft, scanf) are found in the standard header file <stdio.h>.

iv. Line 4 is the beginning of the main() function. It is the only compulsory and the most important
function of any C program.

v. Lines 5 and 7 are the opening and closing braces of main. These braces contain the instructions
to be executed (statements).

vi. Line 6 is the only statement in the function. It is a call to another function called printf, which is
an output function. Its job is to display the provided information on the screen. The definition of
this function is in the standard input output library stdio.h. Hence we have included that file in
the program.

vii. The sequence of characters enclosed in " " is called a string which is displayed on the screen as
it is.

viii. \n is a special character (although it is composed of two characters) called the newline
character. This character advances the output to the next line.

printf does not supply a new line automatically. Hence multiple printf() statements are used. So,
the following printf statements:

Will give the following output
Welcome to C]
We can introduce the new-line character in the strlng at the appropriate position. The printf
“statements will now look like.
printf ("Welcome to \n C");
This is analogous to writing

printf ("Welcome to \n");
printf ("C");

1.7 COMPILERS AND INTERPRETERS

Programs written in a high level language have to be converted into machine code in order to be
executed. The software which does this translation is called a Compiler or Interpreter. Some high level
languages use a compiler whereas some use an interpreter.

Sggé? =~ Compiler/ interpreter ' %tgggt

Flgure 1.4

C Programming .

o

An Overview of C

Difference between Cbmpiler and Interpreter

1 A compiler takes the entire program and generates | An interpreter takes a single instruction of the
" | the object code for the program. program, converts it to object code and executes it.
2. | An intermediate object code file is created. No intermediate file is created.
3 Once the object code is created, the program need | Every time a program is executed, conversion from
" | not be compiled every time before execution. high level to machine code has to be performed.
A compiled program executes faster especially if . . .
4. the program contains loops. An interpreter is slower than a compiler.
5 The compiler is not involved in the execution of the An interpreter also executes the instruction.
program.
There is more memory requirement since 6bject : ;
6. files are created. Memory requirement is less.
7 A list of errors is generated after the entire program | Errors are displayed for every instruction interpreted.
" | is checked. . Debugging is easier.
8. | PASCAL, C use compilers. BASIC has an interpreter.
1.8 EXECUTING A 'C' PROGRAM
Executing a program written in C involves a series of steps. These are:
i. Creating the program
ii. Compiling the program

iii.

iv.

Linking the program with functions that are needed from the C library and

Executing the program

Figure 1.4 illustrates the process of creating, compiling and executing a C program. Although these
steps remain the same irrespective of the operating system, system commands for implementing the
steps and conventions for naming files may differ on different systems.

An operating system is a program that controls the entire operation of a computer system. All
input/output operations are channelled through the operating system. The operating system which is an
interface between the hardware and the user, handle the execution of user programs.

The two most popular operating systems today are UNIX (for minicomputers) and MS-DOS (For
microcomputers). We shall discuss briefly the procedure to be followed in executmg C programs
under both these operating systems in the following section.

(o C Programming o An Overview of C

Jision
l System ready l

h
Program code]——-»{ Enter program J
< Source program

Edit
source program

Compile
Program code source program

Syntax
errors?

Object code

System library syslitmvl\ilgrary

Executabie object code

Execute

Input data object code

waia error

Logic error

»

No errors
Correct output

h
l Stop |

Figure 1.5

Execution of C Program on UNIX and DOS

Unix System
Creating the Program

Once we load the UNIX operating system into the memory, the computer is ready to receive
program. The program must be entered into a file. The file name can consist of letters, digits and
special characters, followed by a dot and a letter c. Examples of valid file names are

C Programming o An Overview of C (o

hello.c

program.c
ebgl.c

The file is created with the help of text editor, either ed or vi. The command for calling the editor
and creating the file is

ed filename

If the file existed before, it is loaded. If it does not yet exist, the file has to be created so that it is
ready to receive the new program. Any corrections in the program are done under the editor.

When the editing is over, the file is saved on disk. It can then be referenced any time later by its file
name. The program that is entered into the file is known as the source program, since it represents the
original form of the program.

Compiling and Linking

Let us assume that the source program has been created in a file named ebgl.c. Now the program is
ready for compilation. The compilation command to achieve this task under UNIX is

cc ebgl.c

The source program instructions are now translated into a form that is suitable for execution by the
computer. The translation is done after examining each instruction for its correctness. If everything is
alright, the compilation proceeds silently and the translated program is stored on another file with the
name ebgl.o. this program is known as object code. ~

Linking is the process of putting together other program files and functions that are required by the
program. For Example, if the program is using exp() function, then the object code of this function
should be brought from the math library of the system and linked to the main program. Under UNIX,
the linking is automatically done if no errors are detected when the cc command is used.

If any mistakes in the syntax and semantics of the language are discovered, they are listed out and
the compilation process ends right there. The errors should be corrected in the source program with the
help of the editor and the compilation is done again.

The compiled and linked program is called the executable object code and is stored automatically
in another file named a.out.

Note that some systems use different compilation command for linking mathematical functions.

cc filename-1m

is the command under UNIPLUS SYSTEM V operating system.

Executing the Program
Execution is a simple task. The command
a.out

would load the executable object code into the computer memory and execute the instructions.
During execution, the program may request for some data to be entered through the keyboard.
Sometimes the program does not produce the desired results. Perhaps, something is wrong with the
program logic or data. Then it would be necessary to correct the source program or the data. In case
the source program is modified, the entire process of compiling, linking and executing the program
should be repeated.

R

"ls(d:ll C Programming . An Overview of C

Creating your own Executable File

Note that the linker always assigns the same name a.out. When we compile another program, this
file will be overwritten by the executable object code of the new program. If we want to prevent from
happening, we should rename the file immediately by using the command.

mv a.out name
We may also achieve this by specifying an option in the cc command as follows:
cc-o—name source-file

This will store the executable object code in the file name and prevent the old file a.out from being
destroyed. '

Multiple Source Files

To compile and link multiple source program files, we must append all the names to the cc
command. '

cc filename-1l.c... filename-n.c
These files will be separately compiled into object files called
Filename-i.o

And then linked to produce an executable programs file a.out as shown in figure 1.5.

1t is also possible to compile each file separately and link them later.

For example, the command

cc~c modl.c

cc-c-mod2.c

We may also combine the source files and object files as follows:

cc modl.c mod2.0

Only mod1.c is compiles and then linked with the object file mod2.0. This approach is useful when

one of the multiple source files need to be changed and recompiled or an already existing object files
is to be used along with the program to be compiled.

] € l l -C I I .c l
. Compiler and
4 v . ¢ Preprocessor
L o | [o] [o]
y Linker
a.out

Figure 1.6

(7

C Programming . An Overview of C

MS-DOS System
The program can be created using any word processing software in non-document mode. The file
name should end with the character ".c" like program.c, pay.c, etc. Then the command
MSC pay.c

Under MS-DOS operating system would load the program stored in the file pay.c and generate the
object code. This code is stored in another file under name pay.obj. In case any language errors are
found, the compilation is not completed. The program should then be corrected and compiled again.

The linking is done by command
LINK pay.obj
which generate the executable code with the filename pay.exe. Now the command
pay
would execute the program and give the results.

EXERCISE

1. 'C' is middle level language. Comment.

2. What are the features of C programming?

Describe the process of creating and executing a C program under UNIX system.

(/e
vision

: Variables, Data Types,
 Operator And Expression

2.1 INTRODUCTION

A programming language is designed to help process certain kinds of data consisting of numbers,
characters and strings and to provide useful output known as information. The task of processing of
data is accomplished by executing a sequence of precise instructions called a program. These
instructions are formed using certain symbols and words according to some rigid rules known as
syntax rule (or Grammars). Every program instruction must confirm precisely to the syntax rules of
the language.

In this chapter, we will discuss the concepts of constants and variables and their types as they
related to C programming language.

2.2 CHARACTER SET

The C character set consists of upper and lowercase alphabets, digits, special characters and white
spaces. The alphabets and digits are together called the alphanumeric characters.

i. Alphabets

201 (/o
visSion

C Programming L4 Variables, Data Types, Operators and. .. (/o
sion

ii. Digits
0123456789

ili. Special characters
yoesn # NN <> ()-8 % &N+ [] /N

iv. White space characters

Blank space, new-line (\n), carriage return (\r), form feed (\f), horizontal tab (\t), vertical
tab (\v). '

2.3 C TOKENS

The smallest individual units in a C program are called tokens as shown below.

C Tokens
ldentifiers Constants Operators
keywords String literals Other Symbols
Figure 2.1

We shall be studying each of these in the sections to come.

2.3.1 ldentifiers and keywords

Every C word is classified either as an identifier or a keyword.

Identifier

An identifier is a user-defined name given to a program element-variable, function and symbolic
constants.

There are certain rules, which should be followed while naming an identifier. They are:

i. Identifier names must be a sequence of alphabets and digits and must begin with an alphabet or
an underscore (_).

ii. No special symbols, except an underscore (_) are allowed. An underscore is treated as a letter.

iti. Reserved words (keywords) should not be used as an identifier.

Variables, Data Types, Operators and .

(o] .
wision C Programming
iv. C is case sensitive, i.e., C treats uppercase and lowercase letters differently. It is a general
practice to use lower (or mixed) case for variables and function names and uppercase for
symbolic constants.

V. For any internal identifier name (an identifier declared in the same file) at least the first 31
characters are significant in any ANSI C compiler.

Examples of valid identifiers: Rate _of_interest, add _ matrix, Sum, PI,

Month _of _Year, al23

Keywords

Keywords are reserved words and are predefined by the language. They cannot be used by the
programmer in any way other than that specified by the syntax. ANSI C language has only
32 keywords. They are:

ANSI C Standard Keywords

auto double Int struct
break else Long switch
case enum register typedef
char extern return " union
const float Short unsigned
continue for signed void
default goto sizeof volatile
do if static while
The following are additional keywords in Turbo C.
asm _es Far near
_Cs _Sss Huge pascal
_ds cdecl interrupt

2.3.2 Constants

Constants refer to fixed values that do not change during program execution. They can be
classified as:
i. Integer constants
ii. Floating point constants
iii. Characters constants
iv. String literals

\'A Enumeration constants

C Programming ° Variables, Data Types, Operators and . . . (o

Iinteger Constants
An integer constant refers to whole numbers. It can be specified in three ways:

a. Ordinary Decimal number (base 10)

b, Octal number (base 8)

c. Hexadecimal number (base 16)

An integer constant has to follow the following rules:

1. It contains a sequence of digits from O to 9. (Octal contains digits from 0 to 7,
Hexadecimal constant contains digits from O to 9 and letters A-F).

An octal constant is preceded with ‘0’ and hexadecimal constant with 0X or Ox.

No commas, spaces or other symbols are allowed in between.

The integer can be either positive or negative. It may or may not be prefixed by a + sign.
5. A size or sign qualifier can be appended at the end of the constant.

U or u for unsigned

S or s for short

L or1 for long

Eallh o

Examples

123 56789U (unsigned integer)

-31000 | 7689909L (fong integer)

0170 0x34ADL. (long hexadecimal)

Ox2A 6578890994UL (unsigned long integer)

-100s | 120US (unsigned short)

Note: The ANSI C standard supports a + sign before the positive integer corresponding to the —
for a negative integer although it is rarely used.

Floating Point Constants

These are real numbers having a decimal point or an exponential or both. The rules governing
the floating point representation are:

a. They have a decimal point and digits from O to 9.

b. No embedded spaces, commas and other symbols are allowed.

c. They may or may not be prefixed by a - sign.

d. It is possible to omit digits before or after the decimal point.

Examples: 0.246 975.64 - .54 +5.

Exponential notation

This is used to represent real numbers whose magnitude is very large or very small.

The format is: mantissa e exponent
Or
mantissa E exponent

VIg{IQII C Programming L4 Variables, Data Types, Operators and .
1. The mantissa can be a floating point number or an integer.
2. It can be positive or negative.
3. The exponent has to be an integer with optional plus or minus sign.
Example

The number 231.78 can be written as 0.23178e3 representing 0.23178 x 10°,
75000000000 can be written as 75¢9 or 0.75e11. 0.0000045 can be written as 0.45¢ — 5.

Character Constant

A character constant is any single character from the C character set enclosed within single
quotes.

Example: ‘@ ‘# ‘2
The value of the character constant is the numeric value of the character.
Example: The character constant ‘0’ has ASCII value 48, which is unrelated to numeric digit 0.

Escape sequences

C supports some special character constants used in output functions. They are also called
backslash character constants because they contain a backslash and a character.

Although they look like two characters, they represent only one.

Complete set of escape sequence is:

\a alert (bell)

\b backspace

\f form feed

\n newline

\r carriage return

\t horizontal tab

\v vertical tab

\0 null character

\ backslash

\? question mark

\ single quote

\’ double quote

\0 octal number
XN hexadecimal constant (where N is hexadecimal constant)
\N octal constant (where N is an octal constant)

C Programming . Variables, Data Types, Operators and . . . (e

String Literals

A string constant or string literal is a sequence of zero or more characters enclosed in double
quotes.

Example: "Welcome to C" -
"First Line \n Second Line"

The double quotes are not a part of the string but only act as delimiters. If the backslash or
double quote is required to be a part of the string, they must be preceded by a backslash (\).

Example: printf ("He said \"Hello \" "); //will display

He said "Hello"
printf("\\ is a backslash"); //displays

\ is a backslash

Technically, the internal representation of a string has a null character (\0'") at the end. Therefore
the physical storage required is one more than the number of characters in the string.

Difference between ‘a' and "a"

'a' is a character constant and stored as the numeric value of a. "a" is a string literal and consists
of the characters, a and '\0'.

‘a “a
L A | LA [w0 |
1 byte 1 byte 1 byte

Enumeration Constant
An enumeration is a list of constant values - each can be represented by an integer.

It is a user defined data type with values ranging over a finite set of identifiers called
enumeration constants.

Example: enum color{red, blue, green};
Red, blue and green are consiants, which represent the integer values of 0, 1 and 2 respectively.
Values can be explicitly specified for the identifiers.
enum color{red = 10, blue, green = 30};
Here, blue is assigned number 11. If no value is épeciﬁed for green it will assume the value 12.

Enumerations provide a convenient way to associate constant values with names. It also makes
the program easy to read and understand.

Ulgl?:ll C Programming 4 Variables, Data Types, Operators and .

2.4 DATATYPES IN C

Programs work by processing data. A programming language must give you a way of storing the
data. Associated with the data is its type.

When a variable is used, you have to specify what type of data it can contain.

The C programming language supports the following data types:

int float double char void

They are called basic or fundamentals data types. In addition, C also supports the enumerated data
type specified by the keyword enum.

2.4.1 Fundamental Data Types

I T-128 10 127

char ' A single character
2 (16 bit machine) | -32768 to 32767
int An integer number -2,147,483,648

4 (32 bit machine) 2147 483.647

A single precision floating

float point number 4 34e38t03.4e+38
(6 precision digits)
A double precision

double floating point number . 8 1.7e-308 to 1.7e +308
(14 precision digits)

void Empty data type 0 valueless

The size allocated for an integer depends upon the compiler. The size of a data type can be
obtained by using the sizeof() operator which gives the size of the specified data type in bytes.

Usage: sizeof (data_type)

Example: printf("%d", sizeof (char));

2.4.2 Qualifiers

A qualifier, when applied to a data type alters its size or sign.

short signed
long unsigned

Normally, short and long cannot be applied to char and float and signed and unsigned cannot be
applied to float, double and long double.

Io; Programming . Variables, Data Types, Operators and . . . (o

ANSI C has the following rules:
short int < = int < = long int

float < = double < = long double
The data types, sizes and their ranges are as shown in the following table:

All possible Data types in C (basic and qualified)

char char 1 -128 to 127
signed char 1 -128 to 127 .
unsigned char 1 0 to 255
int int 2(16 bitm/c) | -32768 to 32767
4(32bitm/c) | —2147483648 to 2147483647
short int 2 -32768 to +32767
long int 4 -2147483648 to 2147483647
unsigned int 2(16bitm/c) |0 to 65535
4(32bitm/c) |0 to 4294967295
unsigned short int 2 0 to 65535
unsigned long int 4 0 to 4294967295
float float 4 34E-38 to 3.4E+308
double | double 8 1.7E-38 to 3.4E+38
long double 10 34E-4932 to 1.1E 4932

Note: The exact size allocated and the ranges for these data types can be obtained from constants
defined in header files <limits.h>, <float.h> and <values.h>.

2.4.3 Enumerated Data type

A user defined data type along with its set of identifiers can be created by the following
declaration:
enum data_type_name {consttl, constt2,}

Example: enum daysofweek {Sun, Mon, Tue, Wed, Thu, Fri, Sat};

2.4.4 void Data Type

void is an empty data type defined by the keyword void. It is used with functions.
When used as a function return type, it means that the function does not return anything.
Example: void calculate_and_display(int a)

When used in place of the parameter list, it indicates that the function does not accept any
information.

Example: int random_number (void);
We shall be dealing more with void data type in the book.

mﬁ@n C Programming b Variables, Data Types, Operators and .

2.4.5 Creating New Data-types Names

C provides a facility called typedef for creating new data type names.
The syntax of typedefis typedef data_type synonym
For example, the statement, typedef unsigned long ulong;

declares ulong as a new data type equivalent to unsigned long. It can be used in exactly the same
way as the type unsigned long can be.

Example: typedef int length;
makes the name ‘length’ a synonym for int.

. It is important to understand that a typedef statement does not create a new type in any sense; it
merely adds a new name for some existing type.

. Use of typedef enhances program readability.

2.5 VARIABLES

A variable name is an identifier or symbolic name assigned to the memory location where data is
stored. In other words, it is the data name that refers to the stored value. A variable can have only one
value assigned to it at any given time during program execution. Its value may change during the
execution of the program.

%

Rules regarding naming variables:

i. Since the variable name is an identifier, the same rules apply.

ii. Meaningful names should be given so as to reflect value it is representing.

student_name rank 1
basic_sal amount
roll_num No_of years
2.6 DATA DECLARATIONS AND DEFINITIONS

Programs operate on data. The data items, which a program manipulates, can be divided into two
classes:

1. Constants
ii. Variables

While variables take different values at different points in time as the program executes, constants
have fixed values. These must be declared before they are used.

C Programmin, L4 Variables, Data Types, Operators and . . . (7
o wision

2.6.1 Declaring Variables

All variables used in the program must be declared at the beginning.

A variable can be used to store data of any data type irrespective of what the variable name is. A
variable is declared by the following syntax:

Storage class Data_type varl, var2,.....,varn

where varl to varn are variable names separated by commas. We shall study about storage classes
in later.

Example: int marks, age;
float amount;
Declaration does two things:

1. It informs the compiler the name of the variable.
i. It specifies what type of data the variable will hold.

forey

There are three basic places where variables will be declared:
a. Inside functions: Local variables

b. In the definition of function parameters: Formal parameters
Outside all functions: Global variables.

a. Local variables

These variables are also called automatic variables (keyword ‘auto’ may be used to declare
them). They can be used only within the block where they are declared. A local variable is
created upon entry into the block and destroyed upon exit. :

Example: Consider two functions as shown
funcl ()
{ int x;
x = 20;
}
func2 ()
{ int x;
x = 100;
}

Here, x has been declared twice but the variable x in func1() is not related to the variable x in
func2(). Both are independent and exist only within their respective functions.

b. Formal parameters

If a function is to accept data, it must use arguments and declare them to accept values. They
behave like any other local variable inside the function.

72

vision

C Programming . Variables, Data Types, Operators and . .

Example: sum(int a, int b)

{

§§}function body

}
Here, sum is a function which accepts two integer values in variables a and b. It could also be
written as follows:
sum(a, b)
int a;
int b;
{

function body

}
We shall be studying formal parameters in detail in the Chapter Functions'.

Global Variables

Unlike local variables, global variables exist and can be used anywhere in a program. They may
be accessed by any expression regardless of what function the expression is in.

They are created by declaring them outside any function.

Example: int count; /* count is global */

main()

{ count = 200;
funcl();

}

funcl()
{ count = 300 ;
}

Initializing Variables

Assigning values to variables during declaration is called initialization.

Example: int i = 5;
This statement not only declares the variable i but also assigns the value 5 to this variable.
Multiple variables can also be initialized.

Example: int sum = 0, i = 10;

2.6.2 Defining Constants

A constant can be declared in C by two methods:

i
ii.

Using const qualifier
Using the #define preprocessor directive.

C Programming L4 Variables, Data Types, Operators and . . . (o

const is a qualifier that can be applied to a data item of any data type. The contents of this data
item cannot be changed during program execution only assigned at the time of declaration
(initialized).

Syntax: cons data_type constant name = value;

Example: const float pi = 3.142;
const char quit = 'g';
Another method of defining constants is by using a pre-processor directive #define. The #define
directive works as follows:
$)define CONSTNAME literal

This creates a constant named CONSTNAME, which represents the constant value of the literal.
By convention, the constant name is written in uppercase.
Example: #define PI 3.142
#define TRUE 1

Any occurrence of PI in the program is replaced by the literal 3.142.

2.7 USER DEFINED TYPE DECLARATION

In C language a user can define an identifier that represents an existing data type. The user defined
datatype identifier can later be used to declare variables. The general syntax is

typedef type identifier;
Here type represents existing data type and ‘identifier’ refers to the ‘row’ name given to the data
type.
Example: typedef int salary;
typedef float average;

Here salary symbolizes int and average symbolizes float. They can be later used to declare
variables as follows:

Salary déptl, dept2;
Average sectionl, section2;

Therefore deptl and dept2 are indirectly declared as integer datatype and section] and section2 are
indirectly float data type.

The second type of user defined datatype is enumerated data type which is defmed as follows:

Enum 1dent1f1er {valuel, value2 ... valuen};

The identifier is a user defined enumerated datatype which can be used to declare variables that
have one of the values enclosed within the braces. After the definition we can declare variables to be
of this ‘new’ type as below.

enum identifier V1, V2, V3, ... Vn

(o C Programming . Variables, Data Types, Operators and . .

vision

The enumerated variables V1, V2, Vn can have only one of the values valuel, value2
valuen.

Example: enum day {Monday, Tuesday, ... Sunday};

enum day week_st, week_end;
week_st = Monday;

week_end = Friday;

if (week_st == Tuesday)
week_end = Saturday;

2.8 OPERATORS AND EXPRESSIONS

An operator is a symbol that represents an operation. It instructs the compiler to perform some
action on one or more operands.

Example: The symbol + represents addition.

An expression is a combination of variables, constants and operators written according to the
syntax of the language. In C, every expression evaluates to a value, i.e., every expression results in
some value of a certain type that can be then assigned.

Examples of expressions: a + b

' PI *r*r

(x + y) — 2.

An operator can b= mnary, hinary or ternary depending on whether it operates on one, two, or
three operands respectively.

Operators can be classified according to the nature of operation they perform. The different
categories are:
i Arithmetic operatdrs
ii. Relational operators
iii. Logical operators
_iv. Increment and decrement operators
v. Bitwise operators
vi. Assignment operator
vii, Conditional operators
viii. Other operators

Operator Precedence Hierarchy and Associativity

If an expression contains more than one operator, the important question is what is the order of
evaluation? Some rules are needed to specify the order in which operations are performed. These rules
are called Operator Precedence or Hierarchy rules.

Precedence states the relative importance or priority of operators with respect to other operators.

C Programming . Variables, Data Types, Operators and . . . (o

Another possibility is that an expression may contain more than one operator having the same
priority. Here, the associativity specifies the order of evaluation of operators having the same
precedence or at the same hierarchy level.

2.8.1 Arithmetic Operators

These perform arithmetic operations. C provides five arithmetic operators.

+ Addition Can also be used as unary plus

- Subtraction Also used as unary minus

> Multiplication

/ Division

% Modulo Division | Can be used only on integer data type

Note: C has no operator for exponentiation. (The function pow(x,y) in math.h can be used to
calculate x°).

. The unary minus operator has the effect of multiplying the operand by —1.
. The unary plus, which was added later, gives the value of the operand.
. Arithmetic operations performed on integers (integer arithmetic) yields an integer values.

Example: 16+5 = 21

16-5 =11
16*5 = 80
16/5 =3
5/2 = 2
16%5 =1
-16 % 5 = -1 (remainder after division and the sign is of the first operand)
. Arithmetic operations performed on float operands (float arithmetic) yield a float result, which

is rounded off to the number of significant digits permissible.

Example: 5.0+20 = 7.0
50/20 = 25
-2.0/3.0 = -0.666667

J When the operands are of different data types (mixed mode arithmetic), the result is promoted
to the ‘higher’ data type. (char < int < float). Thus if one operand is an integer and the other
float, the result will be of float type.

Example: 5.0/2=25

mg{)"’“ C Programming i Variables, Data Types, Operators and .

Hierarchy of Arithmetic Operators

* % LR

+— L->R

Example: Consider the integer expression
52+4-6*2+25/5-3/4
The order of evaluation is as shown:

52+4-6*%24+25/5-3/4
244-6%2+25/5-3/4
2+4-12+25/5-3/4
2+44-12+5-3/4
244-12+45-0
6-12+5-0
-6+5-0
-1-0
-1
Note: In order to override the operator precedence rules, parenthesis can be used. Since parenthesis
have higher priority over operators.
Example: In the expression (4+5) * 6, the addition will be done first even though * has higher

precedence since the addition operation is parenthesized.

)

2.8.2 Relationai Operators

Relational operators are used to compare expressions. An expression containing a relational
operator evaluates to either True (1) or False (0).
Any non-zero value is considered ‘True’ in C and 0 is false. Thus, even negative values are True!

The six relational operators are

< Less than
<= Less than or equal to

> Greater than
>= Greater than or equal to
== Equal to (equality)

|= Not equal to (inequality)

These operators are mainly used in decision-making statements to decide the course of action in a
program. These operators are lower in precedence than arithmetic operators. Among themselves, the

precedence is
| Oraraiors | hestoatines
_ Operstors | Asstolativity |
€ <= »>a= L-aR
an |m L-R

C Programming . Variables, Data Types, Operators and . . . v (/o

Examples

25 < 30 True
25<=2.5 True
‘a'==97 True
‘b’ <'a False
(a+b) 1= (x+y) | True if the sum of values of a and b is not equal to the sum of values of x and y

2.8.3 Logical Operators

Sometimes, we need to test more than one condition at a time and make a decision depending upon
the result.

The logical operators are used to combine two or more expressions (usually relational). The entire
expression is called logical expression which evaluates to True (1) or False (0). The three logical
operators in C are:

& & Logical AND

Binary operators
I Logical OR yop

! Logical NOT | Unary operator

Evaluation of a logical expression stops as soon as a true or false result is known.

The results of logical AND (&&) and OR (Il) operators for different combmatlons of the two
operands is given in the following truth table:

False | False 0 0
False | True 0 1
True | False 0 1
True | True 1 1

Examples: (marks >=60) && (marks < 70)
age > 60 Il salary > 10000

The logical NOT (!) operator takes a single expression and reverses the value of the expression,
i.e., if the expression is True, the ! operator evaluates to false and vice-versa.

Example: (5 <10) evaluate to O since 5 < 10 is True.

Precedence and Associativity of Logical Operators

| R—L

&& LoR
Il L-R

Note: ! has higher priority than arithmetic and relational operators, but && and Il have lower priority
than both.

C Programming L4 Variables, Data Types, Operators and

o
vision

2.8.4 Increment and Decrement operators

C provides two useful unary operators not generally found in other languages; increment and
decrement operators. They are:

ng

++ Increment

— Decrement

They can be used in 2 ways:

i. Prefix: The operator is written before the operand. The increment or decrement is done before
the value of operand is used in an expression. :
Example: ++n,——Xx

ii. Postfix: The operator is written after the operand. The increment or decrement is done after the
operand value is used in an expression.

Example: n++,x—-

Note: When used independently, the prefix and postfix forms make no difference but they behave
differently when used in expressions on the right hand of an assignment statements.

Example: If n is 5, then the statements ++n; and n++; both increment the values of n by
1 and are equivalent to n= n+1; However, in the statement,

y=n++;n increments after its value has been assigned to y, i.e., y is given the value 5 and then n
becomes 6. Whereas y=++n first increments n to 6 and 6 is then assigned to y. The same logic applies
to the decrement operator.

Examples
1. If x=0and y=0
z=++x || ++vy;
will result in z =1, x=1, y=0.
Since ++x increments X to 1, the result of OR is True. Hence ++y will not be evaluated.
2. z=xX++ && ++y
Result: z=0, x=1, y=0
x++ is post increment. The old value of x, i.e., O will be used. Hence the result of && is 0.
Thus, ++y will not take place.
3. X4+ &&+-i—y llz++

If values of x, y and z are 0,1 and O respectively, the expression evaluates to 0 and values of x, y
and z becomes 1,1 and 1 respectively.

The && operation is performed before Il. For the && the initial value of x, i.e.; 0 is used. ++y
will not be evaluated since the result of the && operation is known to be 0. For the Il operation,
one operand is 0 and so the other operand is evaluated. The old value of z (i.e., 0) is used since
it is post- increment. .. OO yields 0 and z then increments to 1.

C Programming L4 Variables, Data Types, Operators and . . . %
vision

2.8.5 Bitwise Operators

C has a distinction of providing six operators for manipulation of data at bit level. They are applied
only to integral operands, i.e., char, short int and long whether signed or unsigned.

& Bitwise AND

| Bitwise OR

A Bitwise XOR
<< Left shift
>> Right shift

~ One’s complement {(Unary)

Except for ~ the others are binary operators and operate on corresponding bits of the two operands.

The bitwise XOR (exclusive OR) operator sets one in each bit position where its operands have
different bits and zero where they are the same.

Example: Assume that a and b are integers with values 13 and 7 respectively. Assuming that an
integer occupies 2 bytes,

a in binary = 0000 0000 0000 1101
b in binary = 0000 0000 0000 0111
a&b = 0000 0000 0000 0101
alb = 0000 0000 0000 1111
a”™b = 0000 0000 0000 1010

Shift Operators

The bit pattern of the data can be shifted by a specified number of positions to the left or right
using the left shift (<<) and right shift (>>) operators respectively. The shift operators perform shift of
their left operand.

When the data is shifted left, the trailing empty spaces are filled with zeros.

Similarly, the leading empty spaces are zero filled when data bits are shifted right.
0000 0000 0000 1101

Example: a

a<<3 = 0000 0000 0000 1000
\.-YJ

zero filled spaces
a>3 = 0000 0000 0000 0001

(The rightmost three bits drop off)

The general syntaxis operandl shift_operator operand2

UISCIQI;)II C Programming . Variables, Data Types, Operators and . .

Note: Shifting by one position to left is effectively multiplying the operand by two.
Shifting right by one position divides the operand by two.

One’s Complement Operator

The ~ operator yields the one’s complement of an integer, that is, it inverts each bit of the operand
(1 to 0 and vice versa) _
Example: Ifa = 0000 0000 0000 1101
~a = 1111 1111 11t 0010
Precedence
~ is along with other unary operators like ++, —— and ! in hierarchy with R — L associativity.
The shift operators have higher precedence as compared to Bitwise AND, OR and XOR.

2.8.6 Assignment Operator

The assignment operator = is used to assign the value of an expression to a variable. The syntax is
variable = expression :
An assignment expression followed by a; becomes an assignment statement.

Example: sum =-a + 10;
The expression a + 10 is evaluated and its value is assigned to variable sum.
c = a << 3; ’

a*3 + b/5;

it

X

Shorthand Assignment Operators

These are obtained by combining certain operators with the = operator. They have the format
variable operator= expression;

C suppotts the following shorthand assignment operators:
+= —-= /= %= <<=>>= &= |="=
Examples: x += y; implies x = x + y;

m /= 3; implies m = m/3;

a += b +1; implies a = a + (b + 1)

Precedence

Assignment operators have the lowest priority so far with associativity R — L.
Example: Consider the statement

a=>b = c;

Here, the value of ¢ is assigned first to b which is then assigned to a.
i =173 += k;
is also a valid assignment statement which is the same as
i=3=13+k;

C Programming L4 Variables, Data Types, Operators and . . . (/e

2.8.7 Conditional Operators

This is the only ternary operator in C. The operator pair ?: is used to construct conditional
expression of the form. '

[expression1? expression2 : expression 3
< Conditional expression ~————>

expression 1 is evaluated first. If it is True (nonzero), then expression? is evaluated and becomes
the resulting value of the conditional expression.

If expression is O (False), the value of the entire expression is that of expression3.

Example: Let a 10and b = 15,
larger = (a>b)? a : b;
Here larger will be assigned 15, i.e., the value of b.

This is the same as

if (a>b)
larger = a;
else
larger = b;
2.8.8 Other Operators

Comma Operator

The comma ', operator is used to separate a set of expressions. A pair of expressions separated by a
comma is evaluated left to right and the type and value of the result are the type and value of the right
operand.

Example: Consideri = (j=3,j+2);

Here, the right hand side contains two expressions j = 3 and j + 2 which are evaluated L —R.

Thus 3 is first assigned to j and the value 3 + 2 is assigned to i.

It could also be used to interchange the values of two variables in a single statement as shown.
temp = a, a = b, b = temp;

The comma operator has the lowest precedence and associates from L — R.

sizeof Operator

This unary operator gives the size (in bytes) of the data—-type or variable. The usage is

sizeof (data_type)
OR

sizeof (object)

Ulg{)@ll C Programming i Variables, Data Types, Operators and .

Example: sizeof(char) gives the result as 1.

Example: printf(“%d %d”, sizeof(int), sizeof(float));

typecast Operator
C provides a unary operator for explicit type conversion called cast operator. Its usage is
(type_name)expression

The expression is converted to the specified data type locally only for the purpose of evaluation of
the expression.

Example: The ratio of number of males to the number of females in a town can be calculated as:
ratio = no_of_males / no_of_females;

Since no_of_males and no_of _females will be declared integers, the division of the two yields an
integer. So even if ratio is declared as a float, the fractional part is truncated due to integer arithmetic
on the right. This can be solved by locally converting one of the operands to a float so that the result of
division is a float.

ratio = (float)no_of_males / no_of_females;

Address (&) and Indirection (») Operators
C provides two unary operators for manipulating data using pointers.
The & operator when used with a variable yields its address.

The » operator denotes indirection and returns the value of the object located at the address that
follow it. |

We shall study more about these in later chapters.

Both these operators have a high precedence along with other unary operators.

The ® and => Operators

The « (dot) and —> (arrow) operators are used to refer to individual elements of structures and
unions (covered in later chapters). Structures and unions are compound data types that can be
referenced under a single name.

[1and ()

Parenthesis () are used to increase the precedence of operators inside them. Square brackets
perform array indexing, i.e., given an array, the expression within [] provides an index or subscript to
the array.

C Programming L4 Variables, Data Types, Operators and . . . (o

2.9 TYPE CONVERSIONS IN EXPRESSIONS

In C, conversion takes place in two form:
i. Implicit type conversion ii. Explicit type Conversion

2.9.1 Implicit Type Conversion

C permits mixing of constants and variables of different types in an expression. C automatically
converts any intermediate values to the proper type so that the expression can be evaluated without
loosing any significance. This automatic type conversion is know as implicit type conversion.

During evaluation it adheres to very strict rules and type conversion. If the operands are of different
types the lower type is automatically converted to the higher type before the operation proceeds. The
result is of higher type.

i. If one operand is long double, the other will be converted to long double and result will be long
double.

ii. If one operand is double, the other will be converted to double and result will be double.

iii. If one operand is float, the other will be converted to float and result will be float.

iv. If one of the operand is unsigned long mt the other will be converted into unsigned long int and
result will be unsigned long int.

v. If one operand is long int and other is unsigned int then
a. If unsigned int can be converted to long int, then unsigned int operand will be converted
as such and the result will be long int.
b. Else both operands will be converted to unsigned long int and the result will be unsigned
long int.
vi. If one of the operand is long int, the other will be converted to long int and the result will be
long int.

vii. If one operand is unsigned int the other will be converted to un31gned int and the result will be
unsigned int.

2.9.2 Explicit Type Conversion

Many times there may arise a situation where we want to force a type conversion in a way that is
different from automatic conversion.

Syntax: (type_name) expression

Consider for example the calculation of number of female and male students in a class:

Ratio =female_students/male_students

Since if female_students and male_students are declared as integers, the decimal part will be
rounded off and its ratio will represent a wrong figure.

Example: Ratio = (float) female_students / male_students

The operator float converts the female_students to floating point for the purpose of evaluation of
the expression. Then using the rule of automatic conversion, the division is performed by floating
point mode, thus retaining the fractional part of the result. The process of such a local conversion is
known as explicit conversion or casting a value.

Ulgl,{:ll C Programming ° Variables, Data Types, Operators and . .

2.10 PRECEDENCE AND ASSOCIATIVITY OF
OPERATORS

The operators are listed in order of decreasing precedence. The operators grouped together in one
level have the same precedence

() Function call L->R

] [] Array element reference L-R

- Pointer to structure member reference LR

. Structure member reference L—R

- Unary Minus - R-oL

+ Unary plus R—-L

++ Increment R—-L

— Decrement R—L

5 ! Logical negation R—L

~ One’s complement RoL

* Pointer reference (indirection) R-oL

& Address R-L

sizeof | Size of an object ' R—L

(type) Type cast R-oL

* Multiplication L—R

3 / Division L->R

% Modulo division L-»>R

4 + Addition L-R

- Subtraction v LR

5 << Left shift L-R
>> Right shift L>R

< . Less than L>R

6 <= Less than or equal to L—-R

> Greater than . L—>R

>= Greater than or equal to L—-R

- == Equality L-R

I= Inequality LR

8 & Bitwise AND L—>R

9 A Bitwise XOR L-oR

10 | Bitwise OR L->R

11 && Logical AND L-R

12 il Logical OR L—oR

13 ?: Conditional LoR

14 %_= t = Assignment RoL

<< = >>=
15 , Comma LR

C Programming L4 Variables, Data Types, Operators and . . . (/o

vision

SOLVED PROGRAMS

1. /*find simple interest */

Output

Enter the principal: 1000
Enter the rate of interest : 5
Enter the time in years : 4
Principal = 1000.00

Rate = 5.00

Time = 4.00

Simple interest is 200.00

2. /* Compute surface area and volume of a cube */

UISCI%®I| C Programming . Variables, Data Types, Operators and . .

Output

Enter the side of cube: 3
Surface area of cube is 54.00 sq. units
Volume of cube is 27.00 cubic units

3 /* Calculate the sum of average of five numbers */

Output

Enter the five numbers

10 25 38 59 13

Entered numbers are 10.00 25.00 38.00 59.00 13.00
Sum = 145.00

Average = 29.00

4. /*leap year checking*/

G
%

C Programming . Variables, Data Types, Operators' and. .. (e
vision

Output

Enter the year: 2004
2004 is a leap year
Enter the year: 2005
2005 is not a leap year

5. What will be the output? Give explanation.
i void main()
{

const int a = §5;
att;
printf("sd", a);

Ans
This program displays one error to the programmer.

Error: Cannot modify a const object. This indicates an illegal operation on an object declared
to be const, such as an assignment to the object.

ii. void main()
{

enum colour (green, red = 5, blue, white,
yellow = 10, pink);

printf("§dédidsdeded", green, red, blue, white, yellow, pink);

Ans
This program displays total seven errors. All errors are same type “Undefined variable”.
Error: Undefined Variable green, blue, white, yellow, pink.

Because when you define the enum data type it must be under { } instead of (). According to
syntax it is wrong. So it displays seven errors.

% C Programming L4 Variables, Data Types, Operators and . .

vision

ili. 4int main()

{ dnt p= =13 >> 1;
printf("sd”, p);

}

Ans

Output is -7

Because

-13>>1

=-13/2

iv. int main()
{ printf("%d", printf("% * g & * g, "5",
"6'"’ "));
}

Ans
Output is 11.
Printf function returns the sum of 5 and 6. And %*s leaves that many the blank spaces.
V. void main()
{ int x, y, z;

xsy=sz=1;

z=++x || ++y && ++2Z;

Printf("x = %d y=%d z = %8d", x, y, z);

}
Ans
Outputis:2 1 1
x=2y=1lz=1

2 Il ++1 results true therefore second part of the statement is not checked and value of y will be
as it is, i.e., y = 1 and x = 2. And the result of the logical statement is true, i.e., 1 which is again
compared with second part of the statement, i.e., 1 && ++1 which is again true so compiler
does not check second part of the statement. And the result of the logical statement is true.

vi. wvoid main()
{

int x = 0x1234;

int y = 0x5678;

x = x & 0x5678;
y=y | 0x1234;
x=x "y

prints ("sx\t", x);
printf ("sx\t", y);

C Programming . Variables, Data Types, Operators and . . . (e

Ans

x =0x1234
X in binary = 1001000110100
y = 0x5678
y in binary = 101011001111000
x=Xx & 0x5678
= 1001000110100 & 101011001111000
x = 1001000110000
Value of x in hexa decimal x = 0x1230
y=y10x1234
Value of y in binary = 101011001111000
1234 in binary = 1001000110100
y =yl 0x1234
=101011001111000 | 1001000110100
=101011001111100
y =101011001111100
Value of y in hexa decimal = 567C
X=x"y
x = 0x1230 » 567C
x = 1001000110000 ~ 101011001111100
x = 100010001001100
X =444C
Therefore x = 444C and y = 567C

Output = 444C 567C

EXERCISES

A. Answer the following:

1. Write equivalent C expressions for the following equations:
atb ab) 3x%y X :l
Y n [X4y T (x+Y) (x-y)
i, S=ut+%at2 v f= 9-5-9+32
2. Evaluate the following C expressions:
i. 25/44+3-7%3+2 ii. 6.5+ (float) 5/2-3 % 8 - 6.5
iil. (13%2) % 8*2)-7 iv. (18-3*3) % (99-2 *10) / (2.5~1.5)

V. 2% ((18/5) + (6* (1.5 +1) % (10-2-1)

(o
uision

C Programming . Variables, Data Types, Operators and . .

Given that initially i = 0, j = 2 and k = 3, find x and the new values of i, j and k for each of the
following expressions:

i x=i4+ || +4] &&k++; i, x=((i<) || +D&& kt+;

i, k*= (i+)) %k iv. x=(G==2)7k:i

v ox=(i>) 4+ (k))i Vi x=i++2j-—:k--,

vii. k% =j = (i=4)% (j=3) vili. x=j>k?k>i?12:k>j?13:14: 15

iX. kt=i++ + ++*3

4. What will be the output of the following?
main () . main()
{ printf(); } { printf ("H\re\rll\O");
main() main()
{ const int i = 10; { printf("Hello\n");
i = 20; main();
} }
B. Review questions
1. What symbol terminates every ‘C’ statement?
2. What delimiters are used to specify the beginning and end of a string in ‘C’?
3. What is the newline character?
4. Wil the following statements written in a program give any errors? If yes, what are they?If no,
specify the output.
i printf (“Welcome” ,“t0” ,”C”);
ii. printf (“Welcoinie” “to” “C”);
iil. printf (“Welcome to C”);
5. Explain the four basic data types in C.
6. Explain the types of constants in C.
7. State the different categories of operators. Explain the arithmetic operators.
8. What are variables? State the rules for naming a variable.
9. What is an escape sequence?
10. What are the two methods for declaring constants?
11. Explain the use of sizeof () and type cast operator.
12. Explain precedence and associativity of operators.
13. What are the different types of C statements?
14. What is the difference between a statement and a block?
15. Are negative numbers considered true or false by C?
16. What happens if a float constant is assigned to an integer variable?
17. What happens if a negative number is put into an unsigned variable?
18. Discuss logical operators of C.
19. Explain bitwise operators of C.
20. Discuss various forms of increment and decrement operators.

C Programmin ® Variables, Data Types, Operators and ... - %
g g yp P wision

Aty o ,
Slorint e redt e

L veid mainly

' enum.colour'(green),
printfhs

'ﬁfiht main() e
'1& intib= ~13 53 1.

: prlntf("%d" &

b}
int main()
_{'z,prinpf(2

- void maing

Built In 1/0 Functions

3.1 INTRODUCTION

All computer prcgrams ecsentially read, process and display data. Unlike other high level
languages, C does not p:ovide buiii-in input/output statements. All input/output operations have to be
carried out by using functions. Many functions for the above purpose have been provided in the C
standard input output library (stdio.h). Included in this file are declarations for the I/O functions and
definitions of constants (like EOF, NULL, etc.).

All 1/0 in C is character-oriented. This includes writing and reading not only to and from the
console, but also to the disc files as well. Console I/O operations in C are divided into two categories —
unformatted console I/O functions and formatted I/O functions. Formatted I/O refers to the fact that
these functions may format the information as per user’s choice. The standard library provides
functions of both categories. These functions are:

i. Unformatted console /O operations ii. Formatted console I/O operations

3.2 UNFORMATTED CONSOLE I/O OPERATIONS

These are console Input / Output library functions which deal with one character at a time and
string functions for array of characters (String).
String Input / Output Functions

i. getchar() ii. putchar()
iii. gets() iv. puts()

C Programming . Built in /O Functions . (/e

3.2.1 Character Input and Output (getchar and putchar)
The function getchar reads and returns an input character from the standard input device.
Usage: variable_name = getchar();

The variable is of char or integer type. getchar() assigns the character value of the input character
to the variable.

Example: char c;
c = getchar();

The function putchar writes a single character on the standard output device.
[kage: putchar (variable_name) ;
OR

putchar (character) ;

Examples
1. - char c=getchar();
putchar (c) ;
2. char ans = 'y';
putchar (ans) ;
3. putchar ('\ n'); /* positions the cursor to the beginning of the next
. line. */

Character Test and Conversion Functions

The header file ctype.h contains declarations of several functions, which are used to test or convert
a character.

isalnum(c) Returns true if ¢ is an alphanumeric character.

isalpha(c) Returns true if ¢ is an aiphabet.
isdigit(c) Returns true if ¢ is a digit.
islower(c) Returns true if ¢ is a lowercase alphabet.

isupper(c) Returns true if ¢ is an uppercase character.

ispunct(c) Returns true if ¢ is a punctuation mark.

isspace(c) Returns true if ¢ is white space characters.

toupper(c) Converts ¢ to uppercase if it is a lowercase letter otherwise keeps ¢ unchanged.
tolower(c) Returns ¢ converted to lowercase it if is uppercase and unchanged otherwise. ‘

Example: char ch = 'a';
putchar (toupper (ch));

will display A on screen.

Character test functions are used with control structures like if, while, etc. However the following
program illustrates how they can be used.

Uls(I{))ll C Programming . Built in IO Functions

Program: /* Illustrates character input-output, test and conversion functions */

Output a

Enter a character ;: *

Not an alphabet

Output b

Enter a character : b
It is an alphabet

It is in lowercase

B

Note: getch() and getche() can also be used to read a single character as getchar(). They are defined
in <conio.h>. The difference between the two is that getche() accepts an input character and

echoes (i.e., displays) it on screen also whereas getch() does not echo it on screen. getch() can
be used to accept passwords.

3.2.2 String Input and Output [gets() & puts()]

Two functions gets() and puts() in the standard input / output library are used for string input and
output respectively.

gets() accepts a string from stdin (Standard input device). gets() continues reading the string,
character by character until the ‘Enter’ key is pressed. The newline is replaced by a NULL character
(\0) at the end of the string. Spaces and tabs are allowed within the string.

Usage: gets (name_of_string);

C Programmin . Built in /O Functions (e
orammhe yision

puts() outputs a string to the standard output device. It also appends a new-line character at the
end.

Usage: puts(name_of_string);
OR

puts(string literal);

Program: /* Illustrates string input-output */

Output

Type a string less than 80 characters: C is easy!
You typed: C is easy!

3.3 FORMATTED CONSOLE 1/0 OPERATIONS

These functions are used to input data from a standard input unit such as keyboard and get the
result on standard output unit such as monitor. As the name suggests, these functions follow a basic fix
format.

Formatted Console 1/O Operations
i printf()

it. sprintf()

i, scanf()

iv. sscanf()

3.3.1 Formatted Output (printf)
The putchar() and puts() functions canAbe used only with character and string respectively.

A versatile output function is printf which can handle any built-in data types and you can specify
the format in which the data must be displayed, i.e., printf displays formatted output to the standard
output device. It returns the number of characters actually printed.

Syntax: int printf ("control string" , argl, arg2, ... argn) ;

(o : C Programming & Built in 1’0 Functions
ViGioH

Control string consisis of
i Ordinary characters that are printed on screen as they appear.
ii. Format specifiers or conversion specifiers, which define the output format of each argument.
iii. Escape sequences like \n, \b,\r, etc.

Format Specifier

i. There must be exactly the same number of arguments as there are format specifier in the same
order. »
ii. Each format specifier begins with a % and ends with a conversion character.
ili. Between the % and the character, there may cptionally be,
a. A minus sign for left justification of the argument.
b. A number that specifies minimum field width. If * is given, it implies to take next
argument as field width.
c. A period, which separates tield width from the precision.
d. A number, specifying precision, i.e., the number of characters to be printed {rom a sitring.

or the number of digits after the decimal point of a float value, or the minimum nusbers
of digits for an integer. * means take next argwmnent size.
e. h if integer is to be printed as short, | for long and L {for fong double.

printf conversion character and meaning

 Char rgumenttype | Printed As
% ¢ int or char Single charactar
%l,%d int Signed decimal integer
%X, %X int Unsigned hexadecimal number using a...... forA.. . F.
%Q int Unsigned octal number
%f float, double Floating point numbers 8 decimal places by default
%e,%E float, double Floating point numbers in exponential format
%0,%G float, double Uses %e or % f whichever is shorter.
%p void * Pointer ‘
% % no argument Prints a %
Y%u unsigned int Unsigned decimal number
%S 29099777 Prints a string

printf conversion character for qualified data *ypes

[Format specifier | Argument type " Cuput 1
%lId, i Long Decimai long integer
Y%lu Unsigned long Unsigned long integer
%hd, hi Short Decimal shott integer
Yhu Unsigned short Decimal unsigned short
Yle, If, Ig Double Signed double
%lelf, Ig Long doubie 1 Signed long double
Ylo Long | Octal tong integsr
Yolx Long | Hexadecimal long

C Programming L4 Built in I/O Functions (o

vision
Examples
1. printf ("This is a string");
2. printf (" "y;
3. printf ("\n");
4. printf ("The value of x is %d" , x);
5. printf("radius %£, area = %f" , rad, area);
6. printf("Hi %d %c %s" , 2, 'U', "Welcome !");
outputs Hi 2 U Welcome !
7. The following statements illustrate the output of number 1234 in
different formats.
printf("sd" , 1234); 314
printf ("%$24d", 1234); 1 314
printf("%6d", 1234); 112134
printf ("%-6d", 1234); 1121314
printf ("s06d" , 1234); 0|01 [2|3]4
8. Displaying a float value in various formats
printf ("$£", 12.3456); 112|e|3|51416]010
printf ("%$8.2£", 12.3456); 112]|e 35
printf("%$10.2e", 12.3456); llef2ie|+|0]1
printf ("%$-10.2e", 12.3456); (1 |le |2]e|+]l0|1
printf ("$E", 12.3456); 1le|2|3]alslele]+]o0 ﬂ
9. Displaying a string "Learn, Write" with different formats.
%s Liejalrin], | Wlriil|lt
%$10s Lietjtalr ’ Wlr|i]|t
% .10s - Lilelajrlinj, Wlrji
%15 s Liejtalr|n|, ilt})e
% - 15s Lietalrin]|, Wirjilt
%15.10s Lleflalzrlin}, Wlr|i
% -15.10s Liejalri{n], Wir| i
%$*.*s,15,2 Lie

10. printf("sd", printf("Hello")); will produce the following output : Hello5

11. What will be the output? Give explanation.
void main ()
{ printf (5 + " Fascimile");

}

Ans
Output is mile.
First 5 characters of the string "Fascimile" are truncated.

Ulgl‘l))qll C Programming . Built in I/O Functions

3.3.2 Formatted Input (SCANF)

The general purpose input function is scanf. It reads characters from the standard input, interprets
them according to the format specifics and stores them in the corresponding arguments. It returns a
number equal to the number of fields that were successfully assigned values.

Syntax: int scanf ("control string" ,&varl, &var2,&varny ;

The argument, each of which is an address, specifies the location where the corresponding
converted input should be stored.

The control string may contain

1. White space characters.

ii. Conversion specifications which consists of a % sign, an optional suppression character *, an
optional number specifying a maximum field width, an optional h (for short int), 1 (for long int
or double), L (for Long double) and a conversion character.

ili. A non-white character which causes scanf to discard the matching character.

scanf Conversion Characters

%d Decimal integer

%C Single character
Yoi Integer (may be in octal with leading 0 or hexadecimal with leading Ox or ox)
%0 Octal integer
%U Unsigned decimal integer
%s Character string
%e,f,g Floating point number
%oX Hexadecimal number
Search sets, which are a sequence of characters. Scanf stops reading a string as
%f...] soon as a character not in the set is encountered. If the first character in the set is
OLee a *, scanf reads all characters till the first matching character from the set is read
from the input. Search sets are case sensitive.
Examples
1. scanf ("$f", &radius);
2. scanf ("$d $f", &roll_num, &marks);
3. scanf ("$d%s", &age, fname);

(an & is not given with fname since fname will be defined as a string and the name of the string
denotes its address) ,

4. scanf ("su", &n) ;
The value of n can be given upto 65535.
5. scanf ("$[abcdef]", address);

This will read the input characters as long as the input characters are in the search set, abcdef.

6. scanf ("% [abc]", address);
If the input given is Mumbai, only Mum will be stored in address since b is in the search set.

C Programming L Built in IO Functions (e

7. scanf ("%d%[/-] %d%[/-] %d", &date, &separator, &month, &separator,
&year);
If the date is entered as : 31-12/2000 , the values assigned are:
date 31
separator -
month 12
separator /
year 2000 _
8. scanf ("%d * [/-] %d % * [/-] %d", &date, &month, &year)
Here, the suppression character * is used which will skip a / or — (i.e., not assign them to any
argument).
9. printf("%d", scanf("%d%s", &a, str));
If the values given are 10 and Hello, the output is 2.
3.3.3 sprintf and sscanf

sprintf is the same as printf except that the output is written into a string rather than displayed
on the output device. The return value is equal to the number of characters actually placed into
the array.

The string is terminated with \0” and it must be long enough to hold the result.
Prototype: int sprintf{(char * buf, char * format, arg_list)

Example: char s(80];
sprintf(str, "%s %d %$f", "Hello", 2, 5.0);

This will result in the data. Hello 2 5.0 to be put into the string str.

sscanf is identical to scanf except that data is read from the string pointed to by buf rather than
stdin. The return value is equal to the number of fields that were actually assigned values.

Prototype: int sscanf (char *buf,char *format,arg_list)

Example: char s[20];
int nl , n2;

sscanf ("hello 10 20", "%s %d %d4", s, &nl, &n2);

This assigns hello to string s and 10 and 20 to nl and n2 respectively.

Ulglfl;l C Programming . Built in I/O Functions

SOLVED PROGRAMS

1. Write a prdgram to accept temperature in °C and convert it to °Fahrenheit using formula

9
temp- in- °F = 5" temp-in- °C +32.

/#This program converts temperature in degree Centigrade to Fahrenheit*/

Output

Enter the temperature in centigrade: 37
Temperature in centigrade = 37
Temperature in Fahrenheit = 98.599998

2. Write a program to calculate the distance between two points, using formula.

d = \(G2-y1) + (X2 -)"
/* To calculate the distance between two points whose coordinates are (x1,y1) and (x2,y2) */

Output

Enter the coordinates of the first point:10 0
Enter the coordinates of the second point: 0 10
The distance is 14.142136

C Programming L4 Built in /O Functions (o

3. Program to convert time in seconds to equivalent hours, minutes, and seconds.
/* This program converts seconds to hours, minutes and seconds*/

Output a

Enter the number of seconds : 60
60 seconds are equivalent to : 0 hrs 1 mins 0 seconds

Output b

Enter the number of seconds : 20000
20000 seconds are equivalent to: 5 hrs 33 mins 20 seconds

4. Write a program to accept integer numbers till user enters '
display how many non-zero integers are entered.

7
Uision

C Programming

Built in /O Functions

EXERCISES

A. Select appropriate answer
1. main ()
{ int i;
printf ("sd", 1i);
a. error b. garbage c. 0 d 32767
ii. main ()
{ int i = 10;
float j = 20;
printf("%d", sizeof (i+j));
}
a. 2 b. 4 c. 1 d. 30
i. main()
{ int 1,
i = 0x10 + 010+10;
printf("%d", 1i);
}
a. 0 b. error c. 34 d. garbage
iv. main ()
{ char ch = 'ABC';
printf("%c", ch);
3
a. error b. ABC c. A d ch
V. main ()
{ printf("\nH\ne\nll\ro");
}
i H
a. b. € C. Hello d. 6]
11
01
0
vi. main()
{ int 1 = 10, a;
a = 1++ / ++4;
printf("%d ..%d", a, 1);
a. 1....12 b. 10....10 c. error d. compiler dependent

C Programming . Built in /O Functions (o

yision
vil. main()
{ int 1 = 10, J = 20;
i 7=3; 37=1i; i7=3;
printf ("%d, , %d", i, J);
}
a. 10....10 b. 10....20 C. 20....10 d. 20....20
viii. enum colors{BLACK, BLUE, GREEN};
main()
{ printf("%d..%d..%d", BLUE, GREEN, BLACK);
} ,
a. error b. Blue, Green Black c. 0...,1...,2 d. 1...,2...,0
ix. "The stock’s value is decreased by 10%"
’ Which of the following exactly reproduces the above message?
a printf ("The stock's value decreased by 10 %");
b. printf ("\"The stock\’s value decreased by %d \ % \.\"\n", 10);
c printf ("\"The stock\’s value decreased by % d %%.\ "\n" , 10);
d None of the above.
B. Predict the outputs
i. main ()
{ int a = 300 * 300, bj;
b = a/2;
printf("%d %d4d", a, b);}
ii. main()
{ char ch = 'A';
int i = 2 ;
flocat £ = ++ch+i;}
printf ("%$f%d%c", £, ch, ch);
ili, main()
{ int x = 12, vy;
Y = X-=;
y - ==-X;
printf ("%d%d", x, vy);
}
iv. main()

{ int a = 5, b = 10;
printf ("%d\n", a++ + b++ + ++a + ++b);
a==5; b=10;
printf ("% d \n", ++a * ++b);
a=>5,; b=10 ;
printf ("$d\n", a = ++a * ++ Db);

(o C Programming . Built in /O Functions
viston .

V. main()
{ int Float = 2, pi = 3.14;
printf("%£%f", Float, pi);
1
Vi. main()
{ int 1,
i = 32000 + 1536 + 10 * 0;
printf("sd", i);
}
vii. main()
{ int x,vy,z;
X =y =2z = -1;
Z = ++xX && ++y || ++z;
printf("x = %d, y = %d, z = %4d", x,y,2);
} .

Viil. main ()

{ char ¢ = 'z',ch;
c =c +'a'-'A"';
Ch = C _|a|+lA|;

printf("%c",ch);
}
iX. main()
{ int i = 10,5;
printf ("%d4d",1);
}
X. main ()
{ const int x;
x = 130;
printf ("&%d", x);
}

C. Programming exercise

bt 3[bf - d4ac

i. Find the roots of a quadratic equation using the formula, 3a . Accept values such
that b’ > 4ac.
it. Accept the basic salary of an employee and calculate and display the following:

Dearness Allowance (DA) = 150% of basic
Income Tax (IT) = 30% of basic
Provident Fund (PF) = 8.33% of basic
Net Salary = Basic + DA - (IT + PF)
ili. Accept two numbers and interchange their values.

iv.

Vi.

C Programming o Built in I/O Functions (7o

Given the three sides of a triangle, calculate its area using the formula \/ s (s-a) (s-b) (s-¢) where
a, b and c are the three sides and s is the perimeter.

The frequency of an electrical circuit is
1 R

F=1\/ic i

Resistance (R) of the circuit and calculate its frequency.

Write a program to accept a character from the keyboard and check if it is an alphabet, digit or

special symbol.

If it is an alphabet, check if it is uppercase or lowercase. If uppercase, convert it to lowercase &

vice-versa.

Write a program that accepts Inductance (L), Capacitance (C) and

Review questions

ii.

iii.
iv.

V1.

Explain the functions getchar and putchar with examples.
Explain the format specifiers used with the printf functions.
Explain search sets in the scanf function with examples.

Is there a difference between: ’

printf ("Hello"); printf("World"); and
puts ("Hello"); puts("World");

What is the difference between getch() and getche() ?
What format specifiers are used with scanf?

visio

Control Statements

4.1 INTRODUCTION

In the previous chapters, we have studied some basic input output functions. We have also seen the
different types of C statem:cnis. i this chapter, we shall be studying the program control statements,
which specify the order in which instructions are executed.

Sometimes, it is necessary to alter the sequence of execution of statements based on certain
conditions or we may require some statements to be executed repeatedly until some condition is met.
This involves decision-making and looping. In addition we shall also be studying the jump statements,
which allow breaking out of decision and loop control statements.

4.2 SELECTION / DECISION MAKING STATEMENTS

Many programs require testing of some conditions at some point in the program and selecting one
of the alternative paths depending upon the result of the condition.

C provides three mechanisms to check for conditions and execute or skip certain parts of the
program. The three decision-making statements are:
i. if statement
ii. if-else statement
iii. switch statement

C Programming . Control Statements (/o

4.2.1 if Statement

This is the simplest form of decision-making statement in C. It allows decisions to be made by
evaluating an expression. Depending upon the result (True or False), the program execution proceeds
in one direction or another. Basically it is a two-way decision statement.

The simplest form is:

if (expression)
statement;

Note: Here, statement could be either a single statement or a block of statements (enclosed in braces)
as shown below. Henceforth, we shall use Statement to imply both

if (expression)
statement;

for single statement.

if(expression)

statements;

for more than one statement.

The keyword if must be followed by a set of parenthesis containing a single expression to be
tested. The statement is executed only if the expression is true (i.e., non-zero). If the condition
evaluates to false, the statement is skipped.

if statement

expression

True

statement (s) Y
b
Figure 4.1
Example
1 if{n<0)

printf ("The nunber i0 negative™);

(/o C Programming . Control Statements
uision

2. if (age<30 && salary>10000)

printf ("You are young and rich !!");
3, if((n%3 == 0) && (n%5 == 0))

printf ("The number is divisible by 3 and 5");
4, if {(basic_sal > 10000)

{
it = 30.0 * basic_sal / 100;
da = 200.0 * basic_ al / 100;
hra = 800.0;

4.2.2 if else Statement

The ‘if’ statement will execute the statement if the expression is true otherwise it will be skipped.
However, in many cases we require an alternate statement to be executed if the expression evaluates to
false. This is possible using an ifelse statement. The general form is,
if (expression)

statementl;
else

statement2;

Here, the expression is evaluated. If it is true, statementl is executed and if it is false, statement2

is executed. Thus, either'statementl or statement2 will be executed; never both.

if else statement

False

Y. v

statementt statement2

Figure 4.2

C Programming L4 Control Statements

Examples

1. if (a>b)
printf("a is larger");
else
printf("b is larger"); ‘
2. if(year%4 == 0 && year3100 != 0 || year%400 == 0)

printf("%d is a leap year", year);
else
printf("%d is not a leap year", year);

This can also be written using the conditional operator?

(year%4d == 0 && year%$100 != 0 || year%400 == 0)?
printf("leap"): printf ("Not Leap");
3. if (number%2 == 0)

printf ("The number is even");
else
printf ("The nunmber is odd");

4, if (basic_sal < 10000)

{
it = 20 * basic_sal / 100;
da = 150 * basic_sal / 100;
hra = 500;

}

else
{it = 30 * basic_sal/100;
da = 200 * basic_sal / 100;
hra = 800;

Nested if ...else Statement

As seen earlier, the if clause and the else part may contain a compound statement.

(/o

Moreover, either or both may contain another if or ifelse statement. This is called as nesting of

ifelse statements.

This provides a programmer with a lot of flexibility in programming. Nesting could take one of

several forms as illustrated below,

1. if(expressionl)
statementl
else
if (expression2)
statement2

C Programming

(o
vision

Control Statements

ii. if (expressionl)

if (expression2)
statementl
else
if (expression3)
+ statement2

iii. if(expressionl)
if (expression2)
statementl
else
statement2
else
statement3

iv.. if (expressionl)

statementl
else
if (expression2)
statement?
else
statement3

V. if (expressionl)

if (expression2)
statementl
else
statement?2
else
if (expression3)
statement3
else
statement4

Examples

1. if (a>b)

if (a>c) .
printf("a is largest");
else
printf("c is largest");
else
if (b>c)
printf("b is largest");
else
printf("c is largest");

C Programming ® Control Statements (/o

2. if((ch >= 'a' && ch <= 'z') || (ch > 'A' && ch <='2"))
printf("%c is an alphabet", ch);
else
if(ch >= '0'&& ch< ='9")
printf("%c is a digit", ch);
else

printf("%c is a special symbol", ch); '
Note: It is a good idea to enclose each of the ‘if’ and ‘else’ blocks in braces if the logic is complex.
Example
A recruitment agency recruits candidates satisfying the following conditions:

i If the candidate is male, between 25 and 30 years of age, height above 160 cm.

‘e

ii. If the candidate is female, between 20 and 25 years of age with height above 155 cm

The if-else construct for the above can be written as follows:

Note: else always gets associated with the nearest if statement. Hence { } should be used to associate
the else with the correct if.

The else ~ if ladder

If there is an if else statement nested in each else of an if- else construct, it is called an else — if
ladder as depicted below. ’

if (exprl) »
statementl;
else
if (expr2)
statement?2; .
else
if (expr3)
statement3;
else
statement4;

UISCI{;II C Frogramming. 4 Control Statements

This can also be written as

if (exprl)
statementl;
else if(expr2)
statement?2;
else if (expr3)
statement3;
else
statement4;

The conditions (expressions) are evaluated from the top downward. As soon as a true expression is
found the statement associated with it is executed and the rest of the ladder is bypassed.

If none of the expressions are true, the final else is executed. The last else often acts as a default
condition, i.e., if all other tests fail, the last else statement is executed.

If it is not present, no action takes place if all other conditions are false.

Examples

1. To check whether a character entered from the keyboard is an alphabet, digit, a special
symbol or punctuation mark.

To find class of a student from the marks.

C Programming U Control Statements (o

vision,

4.2.3 The switch Statement

Whenever one of many alternatives is to be selected, nested if - else statements can be used.
However, the structure becomes very complicated and the code becomes difficult to read and trace.

For these reasons C has a built-in multiple-branch decision statement called switch. This statement
tests whether an expression matches one of a number of constant integer values and branches
accordingly.

The format is
switch (expression)

{
case const-exprl : statement;
case const-expr2 : statement;
case const-expr3 : statement;

default : statement;

As mentioned before statement implies a single statement or a compound statement.

. The expression enclosed within parenthesis (integer expression) is successively compared
against the constant expression (or values) in each case. They are called case labels and must
end with a colon (©). '

. The statement in each case may contain zero or more statements. If there are multiple
statements for a case they need not be enclosed in braces.

° All case expressions must be different.

° The case labeled default is executed if none of the other cases match. The default case is
optional and if not included, no action takes place at all if none other match.

o Cases and the default case can occur in any order.

. More than one case value may be associated with a particular statement.

Example: [* Use of switch statement */

Ulgl{':ll C Programming * Control Statements

Output

Enter a number between | and 3:2
You entered 2

You entered 3

Out of range

However, this is not the required output. The output is like this because when a match occurs, not
only the statement associated with the matching case is executed but those of all the remaining cases
are also executed. Using a break statement can solve this problem.

Use of break Statement

The break statement is used to exit a control structure. As soon as a break statement is encountered,
program control is transferred to the first statement outside the structure to which the break belongs.

In the above program, if a break statement is included in gvery case, as soon as a match is found,
the statement(s) of the matching case will be executed and the break statement will take control
outside the switch statement as illustrated below.

The default case need not have a break statement since it will be the last case executed if no others
match.

Example: Tllustration of switch using break.

Output a

Enter any number between 1 and 3:2
You entered 2

Output b

Enter any number between | and 3:10

Out of range.

C Programming . Control Statements (o

Note: To associate more than one case value with a particular statement, you have to simply list the
multiple case values before the common statement (s) that are to be executed. This is called-
falling through cases.

Examples
i. switch(operator)
'{
case '*!
case 'X' : result = valuel * value2;
printf ("%$£", result);
break;
.}
ii. switch(c)
{ case '0' : case 'l' use: case '2' : case '3':
~case '4' : case '5S' : case '6' : case '7':
case '8' : case '9': digit++; break;
case ' ' : case \n : case '\t' : white_space++; break;}

Nested ‘switch’ Statement

It is possible to have a switch statement as a part of a statement in another switch statement. Even
if the case constants of the inner and outer switch contain common values there is no conflict.

Example
switch (x)
{ case 0 : printf("Invalid value");
break;
case 1 : switch (y) _
{ case 0 : printf("values are 1 and 0");
break;
case 1 : printf("values are 1 and l")}
break; }
break; '

case 3

(/o
uision

Comparing if-else and switch Statements

C Programming .

Control Statements

Although both these statements can be used for multi-way decision-making, there are some

differences between the two, which are crucial for the selection of one of these in a program.

If-else structure

Switch statement

The if-else structure allows only two-way branching
from a single expression.

Statement1
True_—"
if (expression)

False
Statement2

Switch allows muIti-way branching from a single
expression.

Case value1
Case value?2
switch (expr)

default

The nested if-else structure is non-elegant and
complicated.

Switch statement is very elegant and easier to
write.

fii.

if multiple alternatives exist, the nesting can go to
many levels and it becomes difficult to match the else
part to its corresponding if.

No such problem occurs using a switch
statement.

iv. | Debugging becomes difficult. Tracing of errors and debugging is easy.
The test expression can be a constant expression or . .
v. | an expression involving relational or logical operators. grr;hg”c;%c;ctjant integer expressions and values
Float and double are also aliowed. ’
vi Multiple statements within if or else have to be | The statements belonging to a case need not be
" | enclosed in braces. enclosed in braces.
4.2.4 Conditional Operators

operator works. The general form is

exprl?

expr2: expr3;

Examples
i. char ch;
ch = getchar ();
X = (ch >= 65 && ch <= 90)2 1: 0;

ii.

The ternary operator?: can also be used for decision-making. We have already seen how this

If exprl is true, the entire expression takes the value of expr2 else it takes the value of expr3.

x? puts ("Uppercase alphabet") :puts("Other character");

‘This piece of code checks if character ch is an uppercase alphabet.

The following statement assigns the largest of three numbers (a,b,¢) to x.

Xx=(a>b? (a>c)?a:c b>ae)? b

Cr

C Programming . Control Statements (o

4.3 ITERATIVE STATEMENTS (LOOP CONTROL
STRUCTURE)

A segment of program code that is executed repeatedly is called a loop. The repetition is done until
some condition for termination of the loop is satisfied.

A loop structure essentially contains
I a test condition
ii. loop statement(s)

The test condition determines the number of times the loop body is executed. It involves evaluating

a loop control variable(s), whose value has to change within the loop body so that the loop execution
can terminate.

The iteration procedure takes place in four steps:

Initializing the loop control variable.
Execution of loop statements.

Changing the value of the control variable.
Testing the condition,

/oo

Depending upon when the loop condition is tested, loops can be of two types:

[y

Top-tested loop (entry controlled loop)
2. Bottom tested loop (exit controlled loop)

In an entry-controlled loop, the condition is evaluated before the loop body is executed. In the
bottom tested or exit controlled loop, the condition is tested after the loop body is executed.

Top-Tested or Entry Bottom Tested or Exit
controlled loop controlled loop

Figure 4.3

u|g|%)|| C Programming . Control Statements

The C language provides three loop structures for use in programs.

1. while statement
ii. do...while statement

iii. for statement

4.3.1 The while Statement

The while loop is the simplest loop structure. It is often used when the number of times the loop is
to be executed is not known in advance but depends on the test condition.

It is an entry-controlled loop, i.e., the condition is tested before the loop body is executed.
The syntax of the loop is:

while (expression)

statement;
The expression is the test condition and can be any valid C expression.

The statement can be a single or compound statement.

How it Works?

. The expression is evaluated and the statement (loop body) is executed as long as the expression
is TRUE (non-zero).

. As soon as the expression evaluates to false, the execution of the loop body is stopped and
control is transferred to the first statement outside the loop body.

e Since it is an entry-controlled loop, if the expression evaluates to false the first time itself, the
loop body will not be executed even once.
Examples

1. Program displaying all even numbers below 50.

/* Demonstration of a simple while loop */

C Programming . Control Statements (o
vision
Points to Remember
® The loop control variable(s) must be initialized (i.e., given some value before the condition is
tested).
® . The loop body must contain a statement to alter the value of the control variable.

2. Calculate the sum of numbers from 1 to n (user specified), i.e., 1+2+43+..........+n

* Illustrates while loop */

3. To accept characters from the keyboard till the user enters * and count the total number
of alphabets entered.

Here, ch = getchar() is enclosed in () because != has‘ higher precedence ovér =; The characvter has
to be read first and then compared. Hence the ().

Ulgi)n@ll -C Programming . Control Statements

4, To reverse a number

/* Program to reverse a number, i.e., if user enters 324, the output should be 423 */

Output

Enter the number to be reversed 5678
The reversed number is 8765.

Nested ‘while’ statement
Just like the 'if' statement, while statements can also be nested. Nesting of loops means a loop that
is contained within another loop.

while (exprl)
{
while (expr2)
{
loop body of while(expr2);
}

Nesting can be done upto any levels. However the inner loop has to be completely enclosed in the
outer loop. No overlapping of loops is allowed.

Nesting of loops is required in many programming exercise like multidimensional arrays etc.
Examples

1. To display the following structure

i ke
NN

3
1234
i.e., 1 to n rows and numbers from 1 to n in the n™ row.

C Programming ® Control Statements (/e

/* program to display triangle of numbers */

In the above program, the outer while loop is for the lines from 1 to n. For each line, we have to
print numbers from 1 to the line numbers. This is done by the inner loop, i.e., for every value of line-
numbers, number takes values from 1 to line_number.

2. Write a program which accept a string and count number of |
lines, characters, spaces, numbers and special characters in a|
string. _

f
(e C Programming . Control Statements

SN .

4.3.2 The do-while Loop
The second iteration statement provided by C is the do-while statement.

The while loop seen earlier is top-tested, i.e., it evaluates the condition before executing any of the
statements in its body. The do-while loop, on the other hand, is a bottom-tested or exit controlled loop,
i.e., it evaluates the condition after the execution of statements in its construct. This means that the
statement within the loop are executed at-least once.

The syntax is

do
{ statement}
while (expression);

The statement (sinole or comnound) is executed as long as the expression is true.
Note: The ; following the while.
The sequence of events is:

i The statement(s) in statement are executed.

ii. Expression is evaluated. If it is true, execution returns to step 1. If it is false, execution of the
loop terminates. :

Example

do

{ printf{"\n - Add a reccrd");
printf ("\n - Delete a record");

~ View Records");
- Quit"):
printf ("\n Enter your choice:%);

printf("\n

O N

printf{("\n

scanf ("%d" &choice);

switch (choice)

case 1 : add{);
break;

C Programming & Control Statements (ro

WISIoNn

case 2 delete ()
break ;

case 3 view();
break;

case 4 : printf("Rye");
}

twhile(choice!=4);
The above program code shows a do while loop, which displays a menu and accepts a choice.

in this case. we want the menu to be displayed and choice to be accepted at least once and so a
do_while foop is preferred. |

4.3.3 The for Loop

The for loop is very fiexible, powerful and most commonly used loop in C. It is useful when the
number of repetitions is known in advance.

This is a top-tested loop similar to the while loop but the advantage is that it combines the
initialization test condition and loop variable alteration statement in a single statement. The syntax is:

for (exprl; expr2; expr3)
statement

where, exprl is the initialization expression
expr2 is the test condition
expr3 is the update expression

These three expressions have to be separated by semicolon (;).

The above loop is equivalent to

I ©
THATE IR R o TPy SO

aedt sndv once, Le s atthe beginning, This expression performs initialization of the
Cvanble tNTniopie mitiabzotone com elso be done as seen later).

Gt pemmons which e eviduated betore execuation of statements in the loop, The
s ed enlyodl the dest expression s true, It is false, the loop execution
Gt Moo st diere can be only o single est expression,

» exp 3o the update expression, which alters the value of the loop control variable.

Ulgl{))ll C Programming i Control Statements

for (Expr 1 ; Expr 2 ; Expr 3)
Execution of for

Example
- for(i=1; i<=100; i++)
printf("sd \n" ,1i);

i=1 —> initialization
i <= 100 — test expression

i++ — update expression

Different Farms of the ‘for’ Loop

i. for(i= 0; 1 < 25; 1i++)
statement; ' - single statement
il. for(i = 0; 1 < 25; i++4)

{ statement;

statement; — compound statement
}
iii. for(i = 0; 1 < 25; i++)
.
or

for(i = 0; i < 25; i++); — loop with no body.

iv. for(i = 0, 3 = 0; 1 < 25; 1i++, J++)
statement - Multiple initialization and multiple
updates separated by comma
V. for(; i < 25, i++) : —» Initialization expression not used.
vi. for(; i < 25;) —~» Initialization and update exprezsiocn
not used
vii. for(;;) — All three not used.

printf (“Forever \n”);

Examples

1. for (i=1, §=50;1<=201|9>=10;i++ J--)
printf ("\n %d %d"i, 3);

C ngra/ aming ° Control Statements (o
ot et s v st VIS108

r(temp=0; temp<=50; temp=temp+5)

-

fahr = (9*temp) /5 + 32);
printf("\n centigrade = %f Fahrenheit = %f",temp, fahr);
}

/* RAccepts values from user till 99 is entered */
int num = 0;
for (;num!=99;)
scanf ("%d", &num) ;
for(i = 0; ++i<10;)

printf("sd \n", i)

Example

1. Calculation of factorial of a number. We know that n! = n X (n-1) X (n-2)x1. Thus we

#include<stdio.h>
main ()

{

have to repeatedly decrement n by 1 till 1 and multiply each value to the previous product.
Note: We can also increment from 1 to n and perform multiplication.

/* Calculation of factorlal */

int num, product ;
printf{"Entexr th@”numv
scanf ("sd",&num)
for(product = 1,

product
printf{"in che

futput

Enter the number : 5

o have been written as :
forfds 1, product = 11 < = DU L)
sodduct s produet F
cutate v where ¥ i a float and v s an infeger.

L

bloat «, powdr = 1, 47

C e

4 C Programming Centrol Statements
visicn

Output a

Enter the base and power: 23
2.000000 raised to 3 is 8.000000

Output b

Enter the base and power : 2.5 2
2.500000 raised to 2 is 6.250000

Nesting for Statements

One for statement can be written within another for statement. This is called nesting ot for
statements as illustrated below.
for (i=1;1i=25;1i++)

{

for (4=1;j<=10;3++)
{ Inner for loop
}

i,. i

Here, for every of i, the inner loop will be executed ten times.

Outer loop

Note: We had earlier written a program to display a triangle of numbers using the while loop.
Another triangle is now illustrated using a for loop. The following triangle is called the "Floyd’s
triangle".

1
23
456

78910

Program: /* To draw a Floyds triangle using nested for loops */

C Programming Control Statements

2, To display a rectangle of n rows and m columns filled with the character '*'.
ok ok kR Kk K '
ook ok ok ok % s
® o ko ok ok ok
® ko ok ok k%

S

8 columns

4 rows

To display multiplication tables 2 to 9 (n multiples each). The required display is:
2X1=2 3x1=3.........9%1:=9
2x2=4 3x2=6.............9%2==18

bl

If the multiples do not fit on a smgh1 screen, display each screen after a pause (about 24
multiples will fit on a screen) '

/* Muitiplication Tables */

Ulglflil C Programming . Control Statements

somultiplierss, cou

ab_lemof*ﬂ L
smultiplier,

This program, for each value of multiplier, table_of varies from 2 to 9 thereby giving each row.

4. Werite a program to accept a positive integer and find the factors.
e.g. 8 = 2x2x2 '

 Oct.2008-5M

5. To display ‘n’ lines of the structure frem the center of the first line on screen.

*

nlines

* k Kk 0k

x k ok Kk %

/* Triangle using the * character */

C Programming Control Statements (7o

Note: Instead of using a loop to display spaces, we can use a single printf statement as:

")

printf("$*s",

Write a program to print the following pattern:

6.

ABCD C
ABC C
A B

spaces, "

B
B
B

A

A
A

mgli;;! C Programming o Control Statements

4.4 JUMP STATEMENTS

4.4.1 Break and Continue

We have already seen the use of the break statement in the switch-case statement. It also has one
more use.

Sometimes, it is required to exit a loop as soon as a certain condition is met, i.e., to force
immediate termination of a loop bypassing the normal loop condition test.

When the break statement is encountered inside a loop, the loop is immediately terminated.

Subsequent statements in the loop are skipped and program control resumes at the next statement
following the loop.

Brealt Statement
Format: break;

Examples

1. The following program checks whether a mumber is prime or not. To check a prime
nuniber, we ‘y!%'{.“i}k;d"\ﬁ\/ﬁﬁy’h divide it by 2 to number 1. I it is divisible the number is not
prime. Thus, as soon g5 we get a O remaioder, we have to break out of the loop.

beludedstdiolhs

Note: If there are nested loops, the break statement will cause exit only from the innermost loop.

2. count .=1;
for(i=1l;i<=5;,1i++)
{ for(j=1;j<=5;3++)
{

C Programming . Control Statements (o

printf ("Enter a number:");
scanf ("%d", &n);
1f(n<0)

break;

}

count++;

}

Here, if the user enters a negative number, the block statement will take control to the statement
count++, in the outer loop.

Continue Statement

The continue statement is somewhat similar to the break statement except that it does not cause the
loop to terminate. It bypasses the remaining statements and it forces the next iteration of the loop to
take place as usual.

Format: continue;

Example

do
{ printf ("Enter a number :");
scanf ("%d", &n) ;
if (n<0)
continue;
sum = sum + n;
} while(n! = 299);

This code accepts integers and calculates the sum of only positive numbers. The loop terminates
after the user enters 999.

In the case of for loop, first the increment part of the loop is performed next the condition is tested
and finally the loop continues.

" while (condition)

S— continue;

break;

Ulg;);;l C Programming 4 Control Statements

Examples
1. int i=5;
while (i)
{ i--
if(i == 3)
break;
printf{"%sd",1i);
}
o/p 4
2. int i=5,
while (i)
{ i-—-;
S 1f(i== 3)
continue;
printf("sd",1);
}
o/p 4210

4.4.2 goto and label

The goto statement is an unconditional jump statement. The goto statement (although not used
frequently) is used to alter the normal sequence of program execution by unconditionally transferring
control to some other part of the program.

Format: goto label;
The statement where control has to be transferred is identified by the label.

I. A label is a valid C identifier.

ii. A label is followed by a colon.

iii. The label can be attached to any statement in the same function as the goto.
iv. The label does not have to be declared like other identifiers.

Example
X=1;
loop:
X++;
1f(X<100)
goto loop;
One good use for the goto statement is to come out of several layers of nesting.

Example

for(...)
{ for(...)

C Programming . Control Statements (o

{ while(...)
{
if (error)
goto out;

out:

Note: Control cannot be transferred from outside to within a loop using the goto statement.

4.4.3 Using exit() Function

The exit () function causes immediate termination of the entire program.

The exit () function is called with an argument O to indicate that termination is normal. Other
arguments are used to indicate some sort of error.

A common use of exit () occurs when some mandatory condition for program execution is not
satisfied. Invalid password entered, absence of color graphics card for running computer games,
negative or invalid input entered, etc.

Example

main ()
{
int code;
printf ("Enter the security code:");
scanf ("%d", &code) ;
if(tvalid(code))
exit(0);

)
In this example, a user-defined function valid (code) accepts the code and validates it. If invalid, it
returns 0 and 1 if valid. If the code is not valid, the program execution is terminated.

Another use could be in the switch case statement as shown to stop program execution if user
enters 4. ’

do
{ ch = getchar();
switch (ch)
{ case '1' : add_record();
‘ break; '
case '2' : delete_record();

Ulglfloil C Programming b4 Control Statements

break;

case '3' : view_records();
break;

case '4' : exit(0)

}
} while (ch!='4");

4.5 COMPOUND STATEMENT

A compound statement (also called a "block") typicaliy appears as the body of another statement,
such as the if statement. Declarations and Types describe the form and meaning of the declarations
that can appear at the head of a compound statement.

Syntax

compound-statement:
{ declaration-list ., statement-list ¢ }
declaration-list:
declaration
declaration-list declaration
statement-list:
statement
statement-list statement

~If there are declarations, they must come before any statements. The scope of each identifier
declared at the beginning of a compound statement extends from its declaration point to the end of the
block. It is visible throughout the block unless a declaration of the same identifier exists in an inner
block.

Identifiers in a compound statement are presumed auto unless explicitly declared otherwise
with register, static, orextern, except functions, which can only be extern. You can leave off
the extern specifier in function declarations and the function will still be extern.

Storage is not allocated and initialization is not permitted if a variable or function is declared in a
compound statement with storage class extern. The declaration refers to an external variable or
function defined elsewhere.

Variables declared in a block with the auto or register keyword are reallocated and, if necessary,
initialized each time the compound statement is entered. These variables are not defined after the
compound statement is exited. If a variable declared inside a block has the static attribute, the variable
is initialized when program execution begins and keeps its value throughout the program.

This example illustrates a compound statement:
if(i > 0)
{
line[i] = x;
X++;
i--;

In this example, if 1 is greater than 0, all statements inside the compound statement are executed in
order.

C Programming . Control Statements (o

Vision

4.6 NULL STATEMENT

A "null statement" is a statement containing only a semicolon; it can appear wherever a statement
is expected. Nothing happens when a null statement is executed. The correct way to code a nuil
statement is:

if (1)
for (i=0;1<10;1i++);
while (i++<10)
{
} :
Note: Statements such as do, for, if, and while require that an executable statement appear as the
statement body. The null statement satisfies the syntax requirement in cases that do not need a
substantive statement body.
As with any other C statement, you can include a label before a null statement. To label an item
that is not a statement, such as the closing brace of a compound statement, you can label a null
- statement and insert it immediately before the item to get the same effect.

This example illustrates the null statement:
for(i = 0; 1 < 10; line[i++] = 0)

.

In this example, the loop expréssion of the for statement line[i++] = O initializes the first 10
elements of line to 0. The statement body is a null statement, since no further statements are necessary.

SOLVED PROGRAMS

1. Write a C program to display the following pattern:

ms(i%@n C Programming 4 Control Statements

2. /* First n prime numbers, use of nested loops */

Qutput

How many prime numbers? : 5
The first 5 prime numbersare: 2 3 § 7 11

C Programming ® Control Statements (P

3. Write a program to compute the real roots of quadratic equation
px*+ gx + r = 0. The roots are given by equation
X; = - ¢+ sqrt (g - 4pr)/2p and

q - sqrt (g> - 4pr)/2p.

gprintf(“bmter the ¢
cacanf("$LSLSL, sp 6
isc=qg q~4*p*r,
.if(discNO)

o

KL (q+sqrt(dlsc) ,
S

prmtf("The rco’%
EQ?‘(lt(o)l

4. Write a program to display the following pattern:

Al
B2, <3

D4, ES, Fé

G7, H8, 19, jlo.

wgd'@“ C Programming J Control Statements

What will be the outbut
i. switch (i)
{

case "hello";

case '"goodbye'";
printf ("Greetings");
break;

case default;
printf ("Boring”);

}
Ans
In the program it displays seven syntax errors on the first two case statements. Because the

syntax of case is wrong. The case statement take the column first and then expression, but in the
program expression is first and then column is mentions.

ii. void main() {

int i; .
for (i =1; i < 4; i + +)
switch (i)
case 1 : printf ("3d", 1i);
break;
{ .
case 2 : p.intf("sd", i);
break;
case 3 : printf("sd”, i);
break;
}
switch (i)
}
Find and explain the output of following program.
Ans
Correct code is
int i;
for (i=1;i<4;i++)
switch(i)

{
casel:printf ("sd",i);
break;//misplaced break
caseZ:printf ("%d",1);//case outside switch
break; :
case3:printf ("%d",1i);
break;

} .

switch (i)
cased:printf ("%d",1);
}

3 will be printed

C Programming . Control Statements
i=1 i<4 switch(i) i ++
1 1< 4 (true) swntgh(1) so case 1 will be executed 5
1 will be printed
switch(2) so case 2 will be executed
2 | 2<4(tue) |5 il be printed 3
3 3 <4 (true) switch(3) so case 3 will be executed 4

4 | 4<4(false) | Loop over

Last switch will be executed i1 = 4 so 4 will be printed
Output=1234

EXERCISES

e

A. Predict the output of the following:
1. main ()
{ int x = 1;
switch (x)
{ case 0-:x= 1;
case 1 :x= 3;
case 2 :1x+= 4;
case 3 :x = 2;
default:x+= 2;
}
printf ("%d" x);
}
i, main ()
{ int x=5,y=50,z=(x+y)*10;
while (x<=5)
X=Y/X;
}
How many times will the loop execute?
Hi. int 1 = 4;

switch (1)

{ default : printf ("A");
case 1 printf("B");
case 4 printf("C");

| .

iv. main()

{ int 1,3, k;
for(=1;d<=4;3++)

if(J*4==12)
goto there;
else

printf ("here\n");
for(i=1,1i<=5 1i++)
{ k = ixi;

there : printf("there\n");
}
}

(o

C Programming ° Control Statements

main()
{ int ¢=97;
switch(c);
{ case 'a':
S if(e>3)
case 'b':
c=10;
printf ("%d",c);
} .
}

Programming exercises

—

Write a program to display all Armstrong numbers below 1000.

(An Armstrong is a number whose sum of cubes of digits is the number itself.

e.g., 153=1"+5"43% ‘

Display all perfect numbers below 500. :

(A perfect number is a number, such that the sum of its factors is equal to the number itself. 6
=1+2+3)

Find the sum of first ‘n’ terms of the following series

i 143+5+... i, x+xX +xX 4

.. 1 2 3 . XX X

. 7+ I e V. X=3y gy

Accept two integers a and b and display a*b , a/b and a%b without using *, / and % operators.
Accept characters from the keyboard till the user enters EOF. Count the number of uppercase,
lowercase alphubets and vowels in the text.

Write a program to dispiay digits of an integer separated by tabs

Example: 1009 -1 0 0 9

2000 -2 0 0 O
Accept data from the keyboard and check if it is valid or invalid.
Accept lines of text from the user and find the length of the longest line.
Review questions

e T AR ol el F B

—
— o

What are the different forms of the if statement?
Explain the switch-case statement with examples.
Differentiate between if-else and switch-case.
Explain else-if ladder with an example.

How does a do-while loop differ from a while loop?
Explain different ways to terminate loop execution.
Explain the for loop with examples.

Distinguish between break and continue.

Write a note on goto and labels.

Illustrate the use of the break statement in the switch —case statement.
Discuss the working of if-else and switch statement.

C Programming

Control Statements

, 1"""“*‘31"*”"’{1” -
S Wmc a program to d

Jthe fullawm

'm
G7

L :

3
ot Ly

HE,

. &

vigen

2

L

Array And Siing

5.1 INTRODUCTIORN

So far we have used variables to store a single data item in memory. However in many applications
we need to store a large amount of data. Thus, we would have to declare and use a large number of
variables, which is very inconvenient.

Moreover, these variables are independent and unrelated to each other. Many applications require
multiple data items to be grouped so that it becomes easy to manipulate them. This can be done using
an array.

Definition

An array is a collection of data items of the same data type referred to by a common name.
Individual data items can be accessed by the name of the array and an integer called the 'index’ or
'subscript'. These items occupy contiguous or consecutive memory locations.

An array is also called a "subscripted variable".

Single and Multidimensional Arrays

An array having only a single subscript is referred to as a single subscripted, lincar or
one-dimensional array. _

An array whose elements are specified by two subscripts is a two-dimensional array (also called a
matrix).

Conceptually, an array can have any number of dimensions, limited only by the available memory.

v

T

Set

C Programming . Array and String (o

5.2 ARRAY DECLARATION
An array has to be declared before it is used in C program. The declaration tells the compiler,

i. the type of the array,

ii. the name of the array,

iii. the number of dimensions,

iv. number of elements in each dimension.

Syntax: data_type array_namelsizel] [size2]... .[sizen];
. data_type specifies the data type of each element of the array.

° array_name is a valid C identifier,

° [sizel].......... [sizen] are the n dimensions of the array. sizel.....sizen are positive integers’
indicating the maximum number of elements in each dimensions.

Note: For each dimension, an array subscript begins from 0 and has a maximum of size-1.
Example: int a[10];
char name[80];
In addition, a storage class can also be specified for the array (default is auto).

Example: static int x[20];

5.3 ONE DIMENSIONAL ARRAY

A one dimensional array is declared as follows:
data_type array_name[size]
Example: int n[10];

This is a declaration of an array n of 10 integers. When an array is declared, the compiler reserves
or allocates a block of memory large enough to store the entire array.

The total number of bytes' allocated is:
Total bytes = length of array * sizeof (data_type)

Thus, for the above declaration, 20 bytes will be allocated (considering that an integer requires
2 bytes). _

n[1] | nl2]
Address —> 1000 1002 1004 1018

Figure 5.1: One dimensional array

Ulg%ll C Programming 4 Array and String

5.3.1 Initializing an Array

Just like ordinary variables, an array can be initialized when it is declared. The entire array or a
part of it can be initialized. An array can be initialized by the declaration followed by an=sign and a
list of values enclosed in braces and separated by commas.

The values are assigned in order, to array elements from subscript 0.
Example
1. int num{5]={10, 15, 25, 90, 100};

num

01 (1] 21 8] 4

Figure 5.2: Array subscripts

a. During initialization, it is not necessary to specify the array size. The compiler allocates
memory to hold the initialization values.

int num{}={10, 15, 25, 90, 100};

b.” If less number of initialization values are specified, the remaining are initialized to O.
int a[10]={1, 2, 3};
Here a[0], a[1] and a[2] are initialized to the specified values and the rest contain O.

c. If more initializers than the specified number of array elements are specified, the
compiler gives an error.

2. char c[5]1={'a', 'b', 'c¢', 'd', 'e'};

5.3.2 Accessing Array Elements

To access a particular array element we have to specify the name of the array followed by the index
in square braces. The index indicates the particular element we want to access.

Syntax: array_name [integer_expression];

Example
n{0] refers to the element at position 0, i.e., the first element.
n{2] refers to the element at position 2 which is the third element.

An integral expression can also be used as a subscript. Example is as follows:

n{5-2]
nli++]
n{i-21]
n{--1i]
nii+jl
are all valid.

C Programming L4 Array and String (o
ision

Assigning Values to Array Elements

Values can be assigned to individual elements by using the assignment operator (=).

Syntax: array_name [index]=value;
Example: n[0] = 20;
n{2] = 35;

Entering Data into an Array

In most of the cases, the values are not known in advance. In such cases, we can accept the data
from the standard input device (stdin) and store it in the array. This can be done in following manner.

The following code accepts ten numbers from the user and places them into the array.

for (1i=0; i<10;i++)
{ printf("\n Enter the value for position %d", i);
scanf ("%d", &nli]); }

The value of i goes from 0 to 9. Initially i=0 and the scanf statement will cause the integer read
from the keyboard to be stored at the location (address) of n[0]. This process will be repeated for the
entire array.

Warning

C does not perform bound checking for an array, i.e., it does not check for the Validity of the
subscript. This responsibility is of the programmer. Hence the programmer should ensure that the
array length is not exceeded. Otherwise some other data may be overwritten.

Example: int n([5];

for (i=0;1i<10;i++)
scanf ("sd",&n(i]);

This code is perfectly valid in a C program.

Reading Data from an Array

All the array elements can be read (accessed) from the array using a for loop as shown:
for(i=0;1i<10;1++)
printf ("\n The value at position %d is %d4", i, nli]);

Examples

1. /* Program to read 10 integers in an array, display them and calculate their average */

mgd; C Programming . Array and String

Note: An operation cannot be performed on a numeric array as a whole. The operation has to be
performed on individual elements.

An array cannot be directly copied into another by using the assignment operator. Individual
elements of the array have to be copied one-by-one. '

2. Write a program which accept the array of an integer and find
GCD and LCM.

C Programming . Array and String (/o

Vision

5.4 MULTIDIMENSIONAL ARRAYS

Multidimensional arrays have more than one subscript. Most often, we require these for storing and
manipulating data structures such as matrices and tables. Here, a two-dimensional array is used. One
subscript denotes the row and the other, the column. '

Examples
1. int m(3]11[2];

m is deélared as a two dimensional array (matrix) having 3 rows (numbered O to 2) and
‘2 columns (numbered O to 1). The first element is m[0] [0] and the last is m [2][1].

2. int arr{3]{41(271;

arr is a three dimensional array which can be thought of 3 two-dimensional arrays having 4
rows and 2 columns each.

5.4.1 Initializing the Array

A multidimensional array can be initialized in two ways as illustrated in the example below.
int m[3]1[{2] = {
{1,2}
13,4}
{5,6}
i
or _
int m{3](2] = {1,2,3,4,5,6};
Note: While initialization, the row dimension (first subscript) is optional.
Example '
1. int m[]1{2] = {1,2,3,4,5,6};
All or only some elements could be initialized.

2. int [41(3] = {

{01,
{1,2},
{3,4,5},
{6,7,8},
}i
A three dimensional array can be initialized as shown.

67@
uision

C Programming . Array and String

5.4.2 Memory Representation

The arrangement of elements of array m in the previous example can be shown as

Col0 Col1t
Row 0 1 2
Row 1 3 4

Row 2 5 6

These elements are stored in contiguous memory locations row-wise, as illustrated below.

mojo] m{OJ[1] m{11{0] m1](1] m[2}io] ml2]2]

NV

2 3 4

4000 4002 | 4004 4008| 4008 4010

€¢— row 0 —3|€—row | —>{ €& rOW2 ——>
Figure 5.3

The three dimensional array num in the previous example can be represented as

col 0 colt
2D Array 2 S R
17 18 l row 0
2D Array 1 > 19 20 row 1
9 10 21 22 row 2
2D Array 0 > e 11 12
1 9 23 24 row 3
13 14
3 4
15 16
5 6
7 8

Figure 5.4

C Programming . Array and String (o
yision

Memory Map

Figure 5.5

5.4.3 Accessing Arra'y Elements
The elements of a two dimensional array can be accessed by the following expression:
array_namef[i] [j]
where i refers to the row number and j, the column number.
Example: m[1]{0lrefers to the number 3
For the 3D array, three subscripts will be required.
Example: num{2][1]1[0] refers to 19

We have already seen how data for one-dimensional array can be accepted from the user. A similar
method is used for a two-dimensional array except that we will now have two loops, one for the row
subscript and the other for the column.

For every value of row subscript, the column subscript has to increment from.0 to number of-
columns-1.

Examples

The following program illustrates matrix additions.

1. /*Program to add two matrices */

Array and String

C Programming

Output a

How many rows and columns in matrix 1?7

on|

ol

How many rows and columns in matrix 2?

ible.

t poss

ition no

Add

Output b

17:

TiX

t

1n ma

How many rows and columns

N

™

ix 27:

ir

1n ma

How many rows and columns

o™

(]

ble

i
1

on poss

iti

Add

trix

Input Ma

1
3

2
4

trix 2

Input Ma

1
1

1
1

18

The sum

2
4

3
S

2.

3.

C Programming ° Array and String

C v)@
uision

Write a program to read m X n size matrix and print its
transpose.

Write a C program to display the 2D matrix in a circular way.
(e.g., A[3][3] = {1,2,3,4,5,6,7,8,9} then yeur output is
123698745).

(e .
vIsion C Programming hd Array and String

4.

C Programming ° Array and String (o

Accept 5 x § matrix from the user and display the sum of each
column.

5.4.4 Limitations of an Array

i

The compiler uses static memory allocation for an array, i.e., we have to specify the array size
in advance. It is not possible to increase or decrease the array size at runtime.

Elements cannot be inserted into an array.
We cannot delete elements into an array.

If the number of elements to be stored is not known in advance, there may be memory wastage
if an array of large size is specified.

If a small array size is specified, there may not be enough memory to place all elements.

C does not perform bound checking on an array, i.e., it does not check for the valid?ty of the
array subscript, Hence, if the array range is exceeded, some other data may get overwritten,

4.

C Programming ® Array and String v (o

Accept 5 x 5 matrix from the user and display the sum of each
column.

5.4.4 Limitations of an Array

i

The compiler uses static memory allocation for an array, i.e., we have to specify the array size
in advance. It is not possible to increase or decrease the array size at runtime.

Elements cannot be inserted into an array.
We cannot delete elements into an array.

If the number of elements to be stored is not known in advance, there may be memory wastage
if an array of large size is specified.

If a small array size is specified, there may not be enough memory to place all elements.

C does not perform bound checking on an array, i.e., it does not check for the validity of the
array subscript, Hence, if the array range is exceeded, some other data may get overwritten.

IIISI)D(DII
Misiud
C Pro,

gramming
[2
ra
y and S
tring

Ulglf;)ll C Programming) Array and String

5.5 STRINGS

A string is an array of characters terminated by a special character called NULL character \O").

Strings in C are enclosed within double quotes.

Example: "Welcome to C" is a string and it is stored in memory as:
(Wl el 1 Telo[m[e[Ttlo] Jc|w]
1000 1002 1004 1006 1008 1010 1012

Each character is stored in 1 byte as its ASCII code. Since the string is stored as an array, it is
possible to manipulate individual characters using either subscript or pointer notation.

5.5.1 Declaring and Initializing Strings

Since a string is a character array, it is declared as follows:

char string_namef[length];
The length determines the maximum number of characters in the string.

Examples: char city[10];
char name [20];
char message[80];

There are two ways to initialize strings.
1. char city!l = {'p','u','n','e',"\0"};
However, C offers a better way to initialize strings.
ii. char city[] = "Pune";
The compiler automatically stores the null character at the end of the string.

Consider the following two declarations. Both are valid, however, there is a distinction between the
two.
char amessgl] = "¢ programming language"; /*array */

amessg is an array big enough to hold the sequence of characters and "\0’.

Even if the characters are later changed, amessg will always refer to the same storage.

amessg | C programming language \0

5.5.2 String Input/Output

The functions printf and scanf can also be used with the format specifier %s. The scanf function
does not allow a string with embedded spaces. gets() allows a string to contain spaces.

C Programming . Array and String

Example: Accept the name of a person and display a greeting.
char name([80};

printf ("Enter your name");

gets (name) ;

printf ("Good Morning %s", name);

5.5.3 String Manipulation Functions

e

C language provides a large number of functions in the header file string.h for the handling of

strings.
The most commonly used functions are:

i. strlen(): This function returns an integer corresponding to the number of characters in the

specified string.

Syntax: size_t strlen(char * s)

Example: char str[20];
gets (str);

printf ("% d", strlen(str));
If the user enters C language, the output will be 10.

ii. strcat(): This function is used to concatenate (join) two strings. It concatenates a copy of the

second string to the first and returns the first. The second remains unchanged.
Syntax: char * strcat (char * sl, char* s2)

Example: char s1[20] = "Pune" , s$2[20] = "Mumbai";
strcat(sl,s2);
puts(sl);
puts(s2);

The output is: PuneMumbai
Mumbai

ili. stremp(): This function is used to compare two strings. It returns an integer, which is

—ve if string 1 < string 2

0 if string 1 is equal to string 2

+ve if string 1 > string 2.

Syntax: int strcmp{char * sl, char * s2);

Ekanuﬂe: char s1[10] = "ABC", s2[10] = "abc";
printf ("%d", strcmp(sl,s2));

The output will be ~ve. Since "ABC" is less than "abc" because the ASCI value of 'A’

is < ASCII value of 'a'.

Note: The function strempi is used to compare two strings ignoring the case.

iv. strepy: This function copies the contents of string 2 to string 1 and returns string 1. The original

contents of string are lost.

Syntax: char * strepy(char * sl, char * s2)

o
vision

The output will be Mumbai

Mumbai

C Programming . Array and String
Example: char s1(20] = "Pune", s2[20] = "Mumbai";
strcpy(sl,s2);
puts(sl);
puts(s2);

Returns the length of the étrfng (numbers of

1 *
strlen size_t strlen(char s) characters excluding the NULL character)
; Copies the contents of string s to d and returns
h * t * * 4
strepy char strcpy (char *d, char *s) pointer to d
streat char * strcat Concatenates a copy of s2 to s1 and terminates
(char * sl1,char *s2) s1 with a null. Returns s1.
Compares s1 and s2 and returns,
. -ve if 81 is less than s2
t st h *sl,ch *s2) . :
stremp | int stremp(char *sl,char *s2) 0ifs1is equal to s2
+ve if s1 is greater than s2
strcmpi int strempi(char *sl1, char * s2) Compargs §1 and s2 ignoring the case and
returns similar results as stremp.
striwr char *strlwr(char *s) Converts a string pointed to by s to lowercase.
strupr char *strupr{char *s) Converts a string pointed to by s to uppercase.
strncat char * strncat Concatenates first n characters of s2 to s1 and
(char *sl,char *s2, int n) returns s1. s2 is unchanged.
strrev char *strrev(char *s) ?t?i\rlgses the string s and returns the reversed
strchr char *st+~br(char *s,char ch) Returns a pOI'nter ?o the first occurrence of
character ch in string s.
strstr char *strstr(chars*l,char *s2) Returns a pointer to the first occurrence of s2in
s1. Returns null if no match is found.
strset char * strset(char *s,char ch) cS)fe(’(;lall characters in pointed to by s to the value
strenet char * strnset Sets the first n characters of string s to the value
(char *s,char ch, int n) of ch
_ Converts a string pointed to by s into an integer,
atoi int atoi{char *s) returning the result. Similarly there is atol and
atof.
. Compares first n characters of s1 and s2.
int strncm . . .
strncmp (char*sl, cEar*sZ, int n) Returns <Q if s'1 is less than s2,0 if they are the
same, >0 if s1 is greater than s2.
Duplicates a string at another location and
strdup char *strdup(chars *s) returns NUL‘L if space could not be a_llocated or
returns a pointer to the storage location
containing duplicated string.
. Returns a pointer to the last occurrence of
rchr har * strch h * . . .
stre © rchr (char *s, int c) character c in string s, NULL if not found.
Searches s1 for tokens that are separated by
striok char *strtok(char *sl,char *s2) delimiters specified in s2. Returns the pointers to
: the first character of first token in s1.

Array and String

]

ing

A

S

ring and check that

e

o
.

irin

£
b

eVerse A

H

[
Ti G
SRS

(o C Progaminiing @ Array and String
UISION .) e s s

3

Substring of a string (return n characters of a string from Jocation i)

5.5.5 Array of Strings

An array of strings is a two dimensional array. This is often requive:d o o pplications dealing with a
list of names, etc.

An array of strings can be initialized.

Example: char cities[4][10] = {"iaow

They are stored as:

fes]
3

cittes [0} 1 P [o n

cities {1} M T o m b

citics[2] | D | e | | [b] i

cities {3 | C hielnja]

In the following program, we will accept 'n' names and sor |
/* Mustrates an array of strings ¥/
ginclude<stdiohs 0 oo
main() ,

C Programming Array and String

SOLVED PROGRAMS

What will be the output of the following segments of program code?

1.

int arr[l2];
printf("8d", sizeof(arr));

Output: 24 ,
arr is declared as an array of 12 integers; each requiring 2 bytes. Thus the size of arr is
12 * sizeof (int) = 24 bytes.
char city[20] = "Pune";
printf("%d", sizeof(city));
Output: 20
city is declared as an array of 20 characters each requiring 1 byte.
char names[][10] = {"Pune ", "Delhi", "Bangalore'"};
printf("3d\t8d", sizeof (names), sizeof (names[2]));
Output: 30 10
names is an array of 3 strings each of length 10 characters. Thus, the size of the array is 30
characters. Each string is of length 10 characters.
void main()
{ char message[]="This is extremely long prompt\n”
"How long is it?\n"
Printf("$s\n %s", message, message+5) ;
} . .
Output is
This is extremely long prompt
How long is it?
is extremely long prompt
How long is it?
Because, message — will print the content of the array.
message +35 — truncate first 5 character from the string and print remaining message.
#define kMaxArraySize 100
int main(void)

{

char myArray[kMaxArraySize];
int i;

for(i = 0; i<kMaxArraySize;i++)
myArray[i] = 0;

return 0;

}
The above program runs successfully, but there is no output because in the program no printf()
statement is mention, :

(o
wision

C Programming L Array and String

EXERCISES

A. Predict the output
1. main ()
{ int x[25];
x[0] = 100;
x[24]= 400;
printf ("\n%d%d", *x, * (x+24) +* (x+0});
}
2. main () ‘ : ,
{ char al[5* 2/2] = {'a','b','x','y"','2"};
printf("sc\n",al3]);
}
3. main ()
{ int p(6] = {1,2,3,4,5,6}
int *q = p;
printf ("$d%dsd", *p+6, 2[ql, pl(ll);
}
4. main()
{ static int num{io0)] = {1,0,0,0,0,0,0,0,0,0};
int 1i,73;
for (j=0;3<10; ++3)
for (i=0;i<j;++1)
num{j] = num[jl+num[i];
for (i=0;1i<10; i++)
printf ("%d\n", num{i]);
}
B. Programming exercises
1. Convert a decimal number to its binary, hexadecimal and octal equivalents.
2 Accept 'n' integers in an array. Accept an integer and check whether it is present in the array. If
it is, display its position.
3. Accept a matrix and check if it is symmetric.
4, Accept a string and display it in the following forms.
If string is ABCDE, the output should be
ABCDE BCDEA CDEAB DEABC EABCD ABCDE
5. Read a string and rewrite it in alphabetical order.
6. Accepta matrix and find the largest and smallest number from the matrix.
7. Shift all zeroes in the series of digits to the end of the series.
Example: 1/p = 001054, O/p = 154000
C. Review questions
1. What is an array?
2. How can an array be initialized?
3. What are multidimensional arrays? How are they initialized?
4. What is the significance of the name of an array?
5. How can an array be passed to a function? Give examples.
6. What are strings?
7. Explain the function.

i. strepy ii. strcmp iii. strlen iv. strcat

C Programming Array and String

C)@
ViSION

6.1 INTRODUCTION

Pointers are an important part of C language, which provide a powerful and flexible way to
manipulate data. They should, however, be used correctly and carefully. Before we go into the details
of pointers, it is essential to know some concepts about the organization of memory and how the

variables are stored there.

6.2 MEMORY ORGANIZATION

‘The computer’s main memory (RAM), consists of a large number of sequential storage locations,
each capable of storing one word of data (usually 1 byte) and identified by an unique address.
Typically, the addresses are numbered sequentially from O to some maximum depending upon the
memory size, i.e., they are positive integer values. When the system is running, the operating system,
uses some part of the memory. When we are running a program, the program code and program data
also occupy some of the system’s memory. In this chapter, we will deal with the memory storage for

program data.

6e1 i (o
vision

C Programming . Pointers (e
—Vision

Address Main Memory
O

l 5
Code %
Program
D?ta . %/
Max —3 : N

Figure 6.1: System memory and addresses

When we use a variable in a program, the compiler sets aside (allocates) a memory location for that
variable. It associates the location’s address (which is unique) with the variable name. Whenever the
program uses the variable, the compiler automatically translates the name into address.

Example
Consider the following statement:
int n = 100;
* When this statement executes, the compiler,

i reserves space in memory to hold an integer value.
. associates the name ‘n’ with this memory location.
ili. stores value 100 at this location.

Value—>§
Address—»1000 1001 1002 1003 1004

Figure 6.2: Storage of variable

In figure 6.2, 2 bytes of memory from location 1002 have been allotted to variable ‘n’ assuming
that an integer requires 2 bytes of storage.

Ulgi%@ll C Programming ° Pointers

6.3 BASICS OF POINTERS

In order to manipulate the value stored at a particular memory location, a user is allowed to access
? the address of the variable by using the '&' operator.

The Address operator (&)
When used as a prefix to a variable name, the ‘&' operator gives the addr?ss of that variable.
For the above example, & n will yield 1002.

Note: '&' can be used only with single variable or array elements.

&75, & (a+b), & ('X') are all invalid.

/* Demonstration of value and address of a variable */

Output

The value of n is 20
The address of n is 1002

Since addresses are integers, it is possible to assign an address to another variable, which will also
be stored in memory just like any other variable.

The assignment can be done by the = operator as shown.

ptr_n = &n;

This statement assigns the address of 'n’' to a variable ptr_n.

Name —>

20
Address—» 1001 10021 1003 1004 1005 1006 |1007 1008

Valug— |

Figure 6.3

C Programming . Pointers (o

What is a Pointer?
A pointer is a variable that stores the memory address of another variable.
Since it is a variable, the pointer variable itself will be stored at some other memory location.

In the above example, ptr_n is a pointer variable because it stores the address of another variable n
and hence it is called a pointer to n.

A pointer provides a method for accessing a variable indirectly.

6.4 APPLICATIONS OF POINTERS

i. Pointers can be used to simulate passing parameters by reference, i.e., the arguments can be
‘modified.

ii. They provide an alternate method to access array elements.
iii. They are used for passing arrays and strings to functions.
iv. They are more efficient in handling complex data structures like linked lists, trees, graphs etc.

\2 One of the most important use of pointer is in dynamic memory allocation where memory is
allocated and released for a variable during run-time.

6.5 USING POINTERS

6.5.1 Declaring a Pointer

Since a pointer is a variable like any other, it has to be declared before it can be used.
Syntax: data_type * pointer_name;
I data_type is any C data type and it indicates the type of the variable that the pointer points to.

ii. The asterisk(*) is the indirection operator and it indicates that pointer name is a pointer
variable and that it stores the address of a variable of the specified data type.

1ii. pointer_name is a valid C identifier.

Examples

char *p_chl,*p_ch2; /* p_chl and p_ch2 are pointers to type char */
int num , *ptr_num ; /* num is an integer variable and ptr_num is a pointer

to type integer */
6.5.2 Initializing Pointers

Uﬁtil a pointer holds the address of a variable it is not useful. The address of a variable has to be
specifically put into a pointer variable by using the address-of operator (&).

(o C Programming o Pointers

vision
A pointer can be initialized by a statement of the form

pointer = &variable;
Example.' ptr_n = &n ; /* assign address of n to ptr_n */
A pointer variable can also be initialized as , char *p = "ABCD";

The pointer p points to a string ABCD which is stored somewhere in memory.

6.5.3 De-referencing Pointer
After having declared and initialized pointers, we come to the main part, i.e., how to use them.

The « (indirection) operator is used along with pointer variables. It is also called the value-at
operator. When used with a pointer variable, it refers to the variable being pointed to. This is
de-referencing of pointers.

Syntax: *pointer_name

Thus, if ptr_n is a pointer, * ptr_n implies value at address stored in ptr_n or variable whose
address is in ptr_n.

De-referencing is the operation performed to access or manipulate data contained in the memory
location pointed to by a pointer.

Note: Any operation performed on the de-referenced pointer directly affects the value of the variable
it points to.

The following example illustrates these concepts.

int n = 20,x ; n X

2
1002 2000
int *ptr_n;/*Uninitialized ’ ptr_n
pointer*/
1006
ptr_n = &n;/*stores address of n ptr_n

in ptr_n*/ 1003
1006
x= *ptr_n; /*put value at ptr_n X
in x */ IHI
2000
In the last statement, x = *ptr_n, the right hand side, i.e., *ptr_n gets the value stored at address in
ptr_n.
-~ *(ptr_n) = value_at (ptr_n)
= value_at (1002)
=20

C Programming

Pointers

(/o

1. /*Illustrate basic pointer use */

Output

Direct access, value =20

Indirect access, value = 20

Direct access, address = 1002

Indirect access, address = 1002
Direct modification, value = 30 30
Indirect modification, value= 50 50

6.6 POINTER EXPRESSION

Like other variables, pointer variables can be used in expressions.

For example: If pl and p2 are properly declared and initialized pointers, then the following
statements are valid.
y = *pl * p2; same as (*pl) *(*p2)
sum = sum + *pl; :
z = 7% - *p2 / *pl; same as (7(-(*p2)))/(*pl)
*p2 = *p2 + 10;
Note that there is a blank space between / and * in the item 3 above. The following is wrong.
z = 7% - * p2 /*pl;

The symbol /* is considered as the beginning of a comment and therefore the statement fails.

o C Programming . Pointers

vision
6.6.1 VOID Pointer

Pointers defined to point to a specific data type cannot hold the address of any other type of
variable.

Example

The following code is invalid.
float *ptr;
int x;
ptr = &x;

C supports a general purpose pointer type called the void pointer. A void pointer does not have any
data type associated with it and can contain the address of any type of variable. They can be declared
as:

void * pointer_name;

Example: void * v_ptr; /* declare v_ptr as void pointer */

char ch;
int i;
float fvar;

v_ptr = &ch; /*valid */

v_ptr = &i; /* valid */

v_ptr = &fvar; /* valid */
6.6.2 De-referencing Void Pointer

Pointers to void cannot be directly de-referenced like other pointer variables by using the *
operator.

Before de-referencing, the pointer has to be typecast to the required data type.

Any pointer can be typecast to a pointer of another type by

(data_type *)pointer_name;
Example: char ch;
void *v_ptr = &ch;

In the above code, if the pointer v_ptr has to be used to refer to the character ch, it can be typecast
using
(char *)v_ptr

Program: Illustrate the use of void pointers

C Programming . Pointers (o

Output

Value of nis 20 20
Valueof mis 12.5 12,5

6.6.3 Pointer Arithmetic

When the * operator is used with a pointer, the number of bytes accessed from the memory will
depend upon the data type to which the pointer points.

For example, when de-referenced,

. A pointer to an int accesses 2 bytes of memory.

. A pointer to a char accesses 1 byte of memory.

. A pointer to a float accesses 4 bytes of memory.

. A pointer to a double accesses 8 bytes of memory.

The C language allows five arithmetic operations to be performed on pointers

i. Increment ++
ii. Decrement - -
iii. Addition +
iv. Subtraction -
V. Differencing

i Increment and decrement
When a pointer to some data type, (where data-type may be int, char, float, etc.) is incremented
by an integral value, i.e., the new value will be,
{current address in pointer) + i * sizeof (data_type)

Example: Incrementing a pointer to an int will cause its value to be incremented by 2 if an
input occupies 2 bytes.

Similarly, a pointer to a float will be incremented by 4 and not 1.

Example: int i = 20;
int *ptr = &i;

i ptr ptr

1000] 22 5 [T002
or ++ptr

1000 2058 2058

The same concept applies for decrementing a pointer, i.e., if a pointer is decremented; it is
decreased by the size of the data item it points to.

Addition and subtraction

C allows integers to be added to or subtracted from pointers.

C’?@)
vision

C Programming L4 Pointers
Example: int *ptrl, n;
ptrl = &n;
ptrl = ptrl+3;

This code will increment the content of ptrl by 6 since ptrl points to an integer (2 bytes) and we
are incrementing it by 3 (i.e., 3 * sizeof (int)).

We cannot add two pointers, i.e., P1+P2 is illegal.

Subtraction is performed in the same way.

Differencing

The only other pointer arithmetic operation allowed is called differencing which is the
subtraction of two pointers.

The subtraction of the two pointers indicates how far apart they are. The result is of a type
called size_t, which is an unsigned integer. It gives the number of elements between two
pointers.
Example: int n, *p,*q;

p = &nj

q = p+2;

printf ("%4d", g-p);
This code will yield a value of 2 even though numerically q and p differ by 4. This is because,
both point to the integer data type and the difference between them is 2 objects.

Compariscn of twe pnointers

Pointer comparison is valid only between pointers that point to the same array. In such a case,
all relational operators can be used.

However the comparison operators == and != can be used to compare pointers of the same type,
void pointers and any other pointer, and any pointer and NULL.

Operations on pointers

Operations on pointers are

Assignment : The value assigned should be an address.

Indirection . Getting the value stored at a location.

Address of : The & operator used with a pointer gives its address.

Increment : Adding an integer to a pointer increments it by the bytes required for those many
data objects.

Decrement . Subtracting an integer from a pointer reduces it by the specified number of

data-objects * sizeof (data-object).

Differencing : Subtraction of two pointers.

C Programming o Pointers (o

Vig1on

Comparison : Equality and inequality can be used with all. The other relational operators can be

6.7

used only with pointers pointing to the same array.

Pointers cannot be multiplied or divided, i.e., expressions such as p,/p, or P,*p,
or p,/3 are not allowed.

PRECEDENCE OF & AND * OPERATORS

Both are unary operators and have precedence equal to other unary operators. They associate from

right to left.

Example

1.

int n = 10, *ptr;
ptr = &n;
printf ("%d", ++*ptr);

Let us consider the expression ++ * ptr . There are two operators, ++ and *, both unary with an
associativity R — L. Thus, the * operation is performed first. It will fetch the value being
pointed to by ptr, i.e., 10. Next, the ++ operator will increment it to 11 as illustrated below.

n ptr ptr n
[ioss] _x+ptr,
1058 2002 2002 1058

e, ++% ptr = ++(*ptr) = ++ (* 1058) = ++(10) = 11

int n =.10, *ptr ;

ptr = &n;

printf ("sd", *++ptr);

In the expression *++ptr , ++ will be done first and then the value pointed to by the changed ptr
will be fetched and displayed.

n ptr ptr Refers n
1068] P [15s0 “"'—"’t
(o}
1058 2002 2002 1060

ie, *++pir=* (++ptr) = * (++1058)
= *(1060)
= data_at_1060

*ptr ++ means first fetch the value pointed to and then increment ptr (since it is post increment).

(/e C Programming . Pointers
Uistion

6.8 POINTERTO POINTER

The concept of a pointer can be further extended. Since, a pointer variable contains the address of
another variable, we could have a variable, which will contain the address of the pointer variable.
Thus, we have a pointer to a pointer.

int i = 10;

int *ptr;

int **ptr_to_ptr:
ptr = &i;
ptr_to_ptr = &ptr;

i ptr ptr_to_ptr
[10] [1058] [2065]
1058 2065 1002
Here,

i .

*ptr } = value of i
*ptr_to_ptr

&1 .
ptr } = Address of i
*ptr_to_ptr] -

The declaration
int *ptr;

implies that ptr is a pointer to an integer whereas,
int **ptr_to_ptr:

implies that ptr_to_pur 1> 2 pCilws (O a pointer.

The double ** indicate that ptr_to_ptr contains the address of a pointer variable. We can also have
a pointer to a pointer to a pointer. Conceptually, there is no limit on how much we can extend the
pointers. However in practice, we rarely use more than two levels of pointers, i.e., pointer to a pointer.

Program: /* Illustrates pointer to pointer */

Output

The value of 1is 10 10 10 10

The address of i is 5498 5498 5498 5498
Pointers to pointers are often used in handling of strings, multidimensional arrays, linked lists, trees
and graphs.

C Programming o Pointers (/o

6.9 - POINTERS TO CONSTANT OBJECTS

A pointer to a constant object can be declared as
const data_type *pointer_name;

Example: const int *ptr;
i.e., ptr is a pointer to a constant integer.

Consider the following code,
int 1 = 10 ;
const int *ptr;
ptr = &i;

i.e., ptr is a pointer to i. Such a declaration of ptr indicates that the contents pointed to by ptr cannot
be changed, i.e.,

*ptr = 20; //1sinvalid
However, ptr itself can be changed, i.e.,
ptr ++; //is valid.

6.10 CONSTANT POINTER

A constant pointer cannot be modified; however the data item to which it points can be modified.

Example: int i = 10;
const int *ptr; /* declares a constant pointer ptr */

ptr = &i;
ptr = 20; / valid */
ptr++; /* Invalid */

A declaration such as

const int *ptr; will not allow any modification to be made to ptr nor the integer to which it
points to.

6.11 DYNAMIC MEMORY ALLOCATION

Dynamic memory allocation means allocating memory storage space at runtime.
So far, we have explicity allocated memory in the program source code by declaring variables and
arrays.

This method is called static memory allocation. The programmer has to specify how much amount
of memory is required.

For example, when we declare an array, we have to specify its size.
In many cases, a user does not know how many elements are to be put.

In such a case, memory is either wasted if the size specified is very large or enough memory is not
allocated if the size specified is smaller than required.

% . * C Programming . Pointers

UISioN

In the Dynamic Allocation method, we can allocate and de-allocate memory whenever required.

C provides memory allocation and de-allocation functions.

1. | malloc Allocates requested number of bytes and returns a pointer to the first byte.
> | calloc This also allocates memory for a group of objects, initializes them to zero and returns a
) pointer to the first byte.
3. | realloc It changes the size (expands or shrinks) of a previously allocated block of memory and
' returns a pointer to the block.
4. | free Releases or frees previously allocated space.
6.11.1 Allocating a Block of Memory

The malloc() function can be used to allocate memory. The prototype of malloc is
void * malloc(size_t num);

size_t is defined in stdlib.h as an unsigned int. The malloc() function allocates num bytes of
storage and returns a pointer to the first byte. It returns NULL if allocation is unsuccessful or if num
is 0.
Example: To allocate memory to store n integers
int * ptr; /*pointer to the block */

ptr = (int *) malloc(n * sizeof(int));

w In this example, explicit type casting is required because by default malloc() returns a void pointer.

ptr 2008 N
2008 > .
6058 € 21 Byt

- Figure 6.4: Allocated memory

The calloc() function is also similar but it allocates a group of objects and initializes the bytes to 0.
Prototype: void * calloc(size_t num, size_t size);
num is the number of objects to allocate and size is the size(in bytes) of each object.

Example: int *ptr; ~
ptr = (int*)calloc(n,sizeof(int));

6.11.2 Freeing or De-allocating Memory

The free() function is used to release the memory that was allocated by malloc() or calloc(k) or
realloc(). ' :

When memory is allocated it is taken from the dynamic memory pool (heap) that is available to the
program.

C Programming ° Pointers ’ (o

_VISION

After the program finishes using a particular block of dynamically allocated memory, it should be
freed to make memory available for future use.

Prototype: void free(void *ptr);
The free() function releases the memory pointed to by ptr. ‘

Program: /* Illustrate dynamic allocation and de-allocation */

In the above program, we have allocated and de-allocated memory for a 1D array.

We can also apply the same concepts for allocating memory for a 2D array.

6.11.3 Altering the Block Size

The realloc() function changes the size of a block of memory that was previously allocated with
malloc() or calloc().
Prototype: void * realloc(void *ptr, size_t size)

r

ptr points to the original block, size is the required new size in bytes.

° If ptr is NULL, realloc acts like malloc and returns a pointer to it.
° If argument size is 0, the memory that ptr points to is freed and function returns NULL.
. If sufficient space exists to expand the memory block, additional memory is allocated and

function returns ptr.

Ulglfloll C Programming . Pointers

o If sufficient space does not exist to expand the current block, a new block of size bytes is
allocated, existing data copied into it, old block is freed and a pointer to the new block is

returned.

° If memory is insufficient for reallocation (either for expanding or allocating of new one), the
function returns NULL and the old block remains unchanged. '

The following program illustrates reallocation.

Program: /*Using realloc()to change memory allocation */

Output

How many numbers : 3
Enter the numbers :

10

S

25

How many new numbers 7 :2
Enter the remaining numbers
50

6

The entire list is :

10 5 25 50 6

C Programming L4 Pointers (o
YISI0N

6.12 POINTERS AND ARRAYS

Pointers and arrays are very closely related. As seen before, an array name without the subscript is
a pointer to the first element in the array. The same holds for arrays of two or more dimensions.

Examples
i. int p(10];
Here, p and &p[0] are identical.
i, ‘char a[10][101;
Here, a and &a[0] [0] are identical.

Pointers are used very often to access arrays because pointer arithmetic is often a faster process
than array indexing, especially when the array elements have to be accessed sequentially.

The reason for this is that, the C compiler internally converts a subscripted notation x[i] to the form
*(X+1). ,
Here, x is the base address of the array.
(*x will give the value of the Oth element. Similarly, *(x+i) gives the value of the ith element.
Thus,
X[i] = *(xH)

= * (i+x)

= i[x]
The following programs proves this,

1. /* Accessing array elements in different ways */

Output
address = 6800 elements = 10 10 10 10
address = 6802 elements = 20 20 20 20
address = 6804 elements = 30 30 30 30
address = 6806 elements = 40 40 40 40
address = 6808 elements = 50 50 50 50

u|§3)®|| C Programming 4 Pointers

Similarly, a 2D array can also be accessed using the pointer notation instead of the subscripted one.
x[il] = *x[]+))
= (H(x+1) +])
This will refer to the element x[i]{j].x[i] is the address of the i® 1-D array.

The following program illustrates passing of an array to a function and the use of pointers.

2. /* Illustrates arrays and pointers */

Output

How many numbers : 3
10

20

30

You entered

10 20 30

The expression x[i] is treated by the compiler as * (x+i).

The for loop in the above function could also be written as follows:
for(i=0;i<n;i++)
{ printf (”%d"”, *x);

X++; }

C Programming . Pointers - (/o

6.13 POINTERS AND CHARACTER STRING

Strings and pointers are very closely related, since a string is an array, the name of the string is a
constant pointer to the string.

In previous chapter, we have seen some functions on strings.

Examples
1. Find the length of the string.

2. Write a program to accept five strings from user and display all

those strings in descending order. : ‘

Eo

"Igf; C Programming . Pointers

6.14 ARRAY OF POINTERS

Just like we can have an array of integer, float or char, we can also have an array of pointer

variables.

As pointer variables contain address, an array of pointers is a collection of addresses. These
elements are stored in memory just like elements of any other array. All rules also apply to this array.

Syntax: data_type * arrayname[size];
Example: int *p{5];
p is an array of 5 integer pointers.

The following program illustrates their use.

/* Array of pointers */

Output:

address = 5804 value = 1
address = 5806 value =2
address = 5808 value=3

C Programming L4 Pointers

(e

arr 3
5804 5806 5808
v Y

2004 2006 2008

Figure 6.5: Array of pointers

Initializing Array of Pointers

An array of pointers can be initialized during declaration as illustrated by the following examples:

Examples

1. Array of pointers to integers.

static int af] = {0,1,2,3,4};

static int *p[] = {a,a+l,a+2,a+3,a+4};
int **ptr = p;

These three lines of code can be pictorially represented as shown.

_af0] alt] a[2] a3 a4

9800 9802 9804 9806 9808

pl0] pl1] pl2] p3] pl4l ptr
o e ;
2410 2412 2414 2416 2418 6508
(a) Array of pointers (b) Pointers to pointer
Figure 6.6

2. Array of pointers to strings.

char * message[6] = {"Pointers","are","interesting","but","need",
for (i=0; i<6; i++)
printf("%s", messagelil);

The array of pointers is represented as illustrated below.

"practice"};

(/o C Programming . Pointers

uision
message [0] —>{Plojilnltlelris|\0;
message [1] alrle/\0]
message [2] ilnltle|rieisitlilnig)\0

message [3]

message [4]

[Ploliln{tleiris)\d arjelojijnlt} - ----]

message {5]

(@) _ (b)

Figure 6.7: Array of pointers to strings

These strings are stored in memory consecutively.

This array can be passed to a function as shown below:

print_words (message, 6) ; /*Call to function */
void print_words(char *pl[],int n)
{ int 1i;

for(i = 0; i<n;i++)
printf("%s",plil);
}

SOLVED PROGRAMS

1. Using pointers accept two strings and store comcatenation of
these two strings without using library functions. ’

C Programming . Pointers (/e

2. What will be the output? Give explanation.
i. main ()
{ int a = 8;
int *p = &a;
int i = a / *p;
printf("%d", i);

}
Ans
Output is 1
Because, value of a = 8 and p points to a so *p = 8. Therefore 8/8 = 1.
ii. int main(void)
{
int num, i;
num = 5;
for (i = 0; i < 20; i ++)
{
AddOne (&num) ;

printf("Final value is %d"”, num),
return 0;

}
void AddOne (int*myVar)
)
{(*myVar) ++;
}

Ans

In the statement Addone (&num) display the one error: - Function Addone should have a
prototype, because the function prototype is not specify in the program. Also this program

display one warning: Function should return a value, because main () function is specify with
int return data type. '

ili. maing()
{ static int a[]= (10,20,30)};
static int * mess [] = {a,a+l,a+2};

printf("$dedsd"”, sizeof(a), sizeof(mess), sizeof(mess[1]));

}
Ans
Output: 6 6 2
1. Here a is an array of 3 integers....sizeof(a) = 6 bytes (Assuming 2 bytes for int)
2. mess is an array of 3 pointers. Each pointer occupies 2 bytes
. sizeof (mess) = 6
3.

mess[1] is the second pointer in the array. Since it stores a single address its size = 2
bytes.

Ulgl{;;l C Programming . Pointers

V. main()
{ char *p = "abed"; p
printf("s%c", *p++t);
printf("\tsc", *p);

®

o
o
(9]
Q.
@

Ans
Output: a b

Consider the expression *p++. There are two unary operators * and ++ which have a R—L
associativity. Hence p++ will be done first. But since it is post increment, the old value of p will
be used to evaluate * and then p will increment.

p currently points to the first character of the string, i.e., a. After incrementing, 1t will point to
the next character, i.e., b. Hence the second printf will yield b.

Vi. main 0

{char *p ="algc"; p
printf("sc...", ++*(++p)); 1000 |~——3 a } q c \0
printf("sc”, *+4p);

}
Output: m..q

p points to beginning of the string, i.e., ++p will increment p to point to next character, i.e., 1 .p
now contains address 1001.

Value at 1001 = I; next ++ operator will increment the value of 1.

This value is incremented giving m.

In the second printf, p is incremented to point to the next character, i.e., q.
*. qis displayed.
vii. void main()

{
int a = 10;

volid *p = §a;

int *ptr = p;
clrscr();
printf("s$u", *ptr);
getch();

C Programming ° Pointers (o

Ans

This program display one error and one warning.

Error: Cannot convert void * to int *. That means an assignment, initialization or expression
requires the specified type conversion to be performed, but the conversion is not legal.

Warning: p is assigned a value that is never used. That means the variable appeared in an
assignment, but is never used anywhere else in the function just ending.

viii. Void main()

{
int a[3][3][3] = {1, 2, 3, 4, 5, 6};

printf("%u %u %u %d"”, a, *a, **ag, *¥**a);

Ans
This program displays the following output:
65472, 65472, 65472, 1

In this program, we create an array namely a with multidimension and assign only rows value of
one dimension. At the print time we are using %u as a control string which is basically used to
display the address of memory value. So in this program display the address of first, second and
third index of array.

ix. wvoid main()

{
static int b[6] = {10, 20, 30};
int i, *k;
k = &b[3] - 3;
for (i =0, i <=5; 41 + +)
{
printf ("sd", *k);
k + +;
}

Ans

b is integer array which is defined using static storage class so all elements with values zero will
be initialized. 3 elements value is given. Others are zero so array b will look like

Subscript bio) | b1] | bf21 | bi3) | bf4) | bis]
Value 10 | 20 | 30 | o 0 0
Assumed address | 1001 | 1003 | 1005 | 1007 | 1009 | 1011

k=&b[3] - 3;

CQ(-)
uision

C Programming .

Pointers

- (++p) will be p

k=1007-3*sizeof(int) = 1007 — 6 =1001(pointer arithmetic, whatever number we add or subtract

we have to multiply size of pointer)

so k will point to first element of an array.

i=0 i<=5 printf (“%d”, *k) k++ i++
*k is value at k k=k+1
0 | 0<5(true) | Valueat(1001) | k=1001+1(sizeof(int)) | 1
10 will be printed =1001+2=1003
*k is value at k k=k+1
1 1<5 Value at(1003) | k=1003+1(sizeof(int)) | 2
20 will be printed =1003+2=1005
*k is value at k k=k+1
2 2<5 Value at(1005) | k=1005+1(sizeof(int)) [3
30 will be printed =1005+2=1007
*k is value at k k=k+1
3 3<5 Value at(1007) | k=1007+1(sizeof(int)) | 4
0 will be printed =1007+2=1009
*k is value at k k=k+1
4 4<5 Value at(1009) | k=1009+1(sizeof(int)) | 5
0 will be printed =1009+2=1011
*k is value at k k=k+1
5 5=5 Value at(1011) | k=1011+1(sizeof(int)) | 6
0 will be printed =10011+2=1013
o l g : ; g::::; Loop will end
Output: 102030000
X. void main()
fzhar *p = “"PROGRAM”;
printf("sc\t", *(+ + p));
p-=1
printf("sc\t”, *(p + +));
; .
Ans
Subscript plo} | pl1) | pl2] | pI3] | PM4] | pIS] | pl€] | pI7]
String characters P R 0 G R A M \0
Assumed address | 1000 | 1001 | 1002 | 1003 | 1004 | 1005 | 1006 | 1007

p will point to first letter of string PROGRAM

p+l

1000+1*(sizeof{char))
1000+1*(1) = 1001

C Programming . Pointers (o

_Vision

*(1001) will be = value at(1001) = R. So R will be printed. After that tab will be printed, cursor
moves by 4 spaces.

p—-=1

p=p-1

p = 1001 — 1*(sizeof(char))

p = 1000 '
*(1000) will be value at (1000) = P so P will be printed.
Output: =R____P

(L) means blank spaces.

Xi. void main ()

{

char *s[] = {"Dharma ", "Norton”, "Simens",
!Iim’l};

char #**p; ‘

P = 8; v
printf("sg", ++ *p) ;
printf("ss", *p ++);
printf("ss", ++ *p);
}

Ans

s = {"Dharma", "Norton", "Simens", "ibm"};

Dihlalrim|lalw|[N]olr-r tjonj\WOIS|i|mlelnis{V]|ilb|mlw
R N RN R R R RN R R
0OjojojJojo|o0]| o 0OjJojofO0|0j0ojo]ojolo|o{ofolololo 6{o0
01010 00 0o o ofol1|1{1]1]1{1]1]1]1]1 2 (2(2122
0j1]2(8|4|5|6 |7 8|90i1|2|3|al5]|6]7 8l9(0 (12|34

p=s

p will contain starting address of s. Sfor example,

s = 1000

p = 1000 therefore p will point to string “Dharma”
printf ("%s", ++*p);

++*p

= ++(value at p)

= ++(1000)

= 1000 + 1(sizeof (char)

=1001+1 =1001

Therefore this printf will print string “harma”.
printf ("%s", *p ++);

(7o C Programming . Poiﬁters
viIsion - :
*p++
= value at p ++
=1001++
= 1001+1(sizeof(datatype))// here data type means p is a pointer to pointer. So size 6 will be
considered.

= 1001+6 = 1007

The statement in printf is post increment so it will first print the value pointed by p then it will
increment the value. So the string first pointed by p will be ‘harma’ so it will be printed then p
will be incremented.

Therefore “harma’ will be printed.
Now p is pointing to character ‘N’.
printf ("%s", ++ *p);

++%p

= ++(value at p)

= ++(1007)

= 1007+1*(size of(char))

= 1007+1*1 = 1008

= p will be pointed to character ‘O’
So string ‘orton’ will be printed.
Output willbe harma

harma

orton

EXERCISES

A. Predict the output

1. main ()
{
char *c;
int *i;
float *f;
double *d;
printf ("\n ¢ = %u c+1 = %u", c, c+l);
printf("\n i1 = %u i+1 = %u", i, 1i+1);
printf("\n £ = %u f+1 = %u", £, £+1);
printf("\n d = %u d+1 = %u", dy d+l);

® Pointers mgjﬁh_

o of a pointer variable differ from an ordinary one?

31 (%) and indirection operator (%),
operations that can be performed on pointers?

woen g pointer @ pointer be declared?

aztions asked in Previvous Exams PU

s follewing programs? Give t

(o C Programmniing 8 ot
UisSIon .

o oy

C Programming Pointers

 Wite a progr
order.

(/e
VISION

7.1 INTRODUCTION

Functions are the building blocks of C and are central to C programming and to the philosophy of
C program design.

main() is the function where execution begins. The other functions are executed when they are
called directly or indirectly by main.

It is mandatory to have a single main() function in every program. In the following sections, we
shall be studying more about main and other functions.

7.2 WHAT IS A FUNCTION?

The program development cycle includes problem analysis, problem definition, design and coding.
The code is a set of instructions in a logical sequence, which performs the specified task. ‘Real world’
applications programs are large and complex. Therefore it is more logical and convenient to break-up
the task into smaller, compact and more manageable modules, called functions.

Definition

A function is a named, independent or self-contained block of statements that performs a specific,
well defined task and may return a value to the calling program.

Te1 Iz
’ vision

1.3

C Programming . Function (e

A function is named. Each function is identified by an unique name and is invoked (or called)
using this name.

A function is independent. It can perform the task on its own. It can contain its own variables
and constants to be used only within the function.

It performs a specific task. A function is given a discrete job to perform as a part of the overall
program. The task has to be well defined.

It can return a value to the calling program. The function can perform execution and optionally
returns information to the calling program.

FUNCTIONS AND STRUCTURED
PROGRAMMING

Functions and structured programming are closely related. In structured programming, independent
section of program code performs program tasks.

Advantages of Functions

NV AW

10.

7.4

Modular or structured programming can be done by the use of functions.

By following the top-down approach, the main function can be kept very small and all the tasks
can be designated to various functions.

Troubleshooting and debugging becomes easier in structured programs.
Individual functions can be easily built and tested.

Program development becomes very easy.

It is easier to understand the program logic.

Multiple functions can be deveioped and tested simultaneously thereby reducing the program
development cycle time.

A repetitive task can be put into a function that can be called whenever required. This reduces
the size of the program.

Frequently used functions can be put together in a customized library.

A function can call other functions. It may even call itself. This technique called recursion is
very useful in solving complex problems and in writing a compact code.

HOW A FUNCTION WORKS?

A C program does not execute the statements in a function until the function is invoked or called.
When the function is called, control passes to the function and returns back to the calling part after the
execution of function is over.

e C Programming) Function
Vision .

The calling program can send information to the functions in the form of argument. An argument
stores data needed by the function to perform its task. Functxons can send back information to the
program in the form of a return value.

Function calls and returns can be illustrated by the following example:

main) /L?’“‘”() || tunes)
j*.c‘:‘a!l to fW func3() ;,\ {
funct(); ” L)

/* call to func2() */
func2(); —1—* | func2()

............ \ emeeneen

main() calls func1() and func2(); func1() calls func3()

Figure 7.1

Note: A function can be called as many times as needed and can be written and called in any order.

7.5 LIBRARY AND USER DEFINED FUNCTIONS

In a C program, functions are of two types:
i. Pre-defined functions or library functions
ii. User defined functions

Function

Library User Defined

Figure 7.2

The pre-defined or library functions are pre-written, compiled and placed in libraries. They come
along with the compiler.

User defined functions are written by the user and the user has the freedom to choose the name,
arguments (number and type) and return data type of the function.

One of the greatest feature of C is that there is no conceptual difference between the user defined
functions and library functions. A user can write functions, collect them and put them into a library,
which can be used by anyone.

In this chapter, we shall be mainly studying user defined functions.

C Programming . Function (o

. Vis|on

Standard Library Functions

Some commonly used library functions are given in the table below. We shall be using some of
them in the later chapters. To use a library function in a program, its corresponding header file must be
included in the program. '

i. stdio.h

int getchar (void) gets a character from stdin

getchar
putchar int putchar (int c) | writes a character to stdout
gets char *gets(char *) gets a string from stdio
puts int puts(const char *) outputs a string to stdout
printf Tg;g?riﬁf (const char* format, writes a character to stdout
int scanf (const char * . .
scanf. format, [address, 1) ; ” scans and formats an input from stdin
sprintf égingfl?zﬁéiﬁzrﬁz ?Uff?)r: char » writes formatted output to a string
int sscanf (const char * buffer, const
sscanf char * format , scans and formats input from a string
[address, ..1);
fflush int fflush(file *); flushes a stream
ii. math.h
abs int X) Bl “‘ Returns the absolute value of x
cos double cos(double x) Returns cosine of x (x is in radians)
exp double exp(double x) Calculates &
floor double floor (double x) Returns the largest integer < = x
log double log(double x) Returns natural log of x
pow double pow(double x, double vy) CabMamSXy
sin double sin(double x) Calculates sine of x
sqrt double sqrt (double x) Calculates square root of x

iii. conio.h

Purpose

ears the text mode window

(voi

void clrscr

clrscr d)

clreof void clreof(void | Clearsto end of line in text window

getch int getch(void) Gets a character from console. No echoing

getche int getche(void) Same as getch but echoes to screen. No buffering is done
kbhit int kbhit (void) Returns an integer corresponding to a keystroke

putch int putch(int ch) | Outputs a character to the text window on screen

C Programming . Function

iv. stdlib.h

atof double atof (const char *s) Converts a string to float

atoi double atoi(const char *s) Converts a string to int
atol double atol(const char *s) Converts a string to long
random int random{int num) Returns an integer between 0 and (num-1)

Initialize the random number generator with a

i volid randomize (void
randomize () random value

system int system(const char * command) | Used to execute an MS-DOS command

7.6 FUNCTION DECLARATION AND DEFINITION

Just as variables used within a program have to be declared, so as the functions. The function
declaration is called the function prototype and it provides the following information to the compiler:

. The name of the function
. The return data type (optional, default is integer)
. The number and type of arguments that will be passed to the function

(The argument name need not be specified).

A prototype should always end with a semicolon.

Syntax: return_type function_name(type argl, type arg2 ...);
Examples
1. int sum(int a, int b, int c); OR int sum(int, int, int};

2. void display(void);

3. double square(double number);

Function Definition

The function definition is the actual function. The definition contains the code that will be
executed. The first line of the definition called the function header should be identical to the function
prototype with the exception of the semicolon. The argument names have to be specified here.

7.7 WRITING A FUNCTION

Each function definition has the following form:

return_type function_name (parameter list)

{
declarations;
statements;

C Programming . Function (7o

7.7.1 The function header
The first line of every function is the function header, which has three components.

i. The function return type: This specifies the data type that the function returns to the calling
program. If the function does not return a value, the return data type of void is used.

Examples: int funcl(....) ~/* Returns an integer value */
float func2(....) /* Returns a type float */
void func3(....) /* Returns nothing */

iil. The function name: The function name can be any valid C identifier. The function name has to
be unique and it should be preferably named so as to reflect the purpose of the function.

iii. The parameter list: Function parameters are the means of communication between the calling
and the called functions. They can be classified as:

. Formal parameters (or parameters), which are given in the function header.
L Actual parameters (or arguments) which are specified in the function call.

Each function has to declare the type and name of the parameter. Commas separate multiple
parameters. For each argument passed in the function call there has to be corresponding parameter in
the parameter list in the function headers with the same data type and the order in which arguments are
sent.

Examples

1. main ()
{ int x,y, result;
result = sum(x,y);} /* function call */ }
int sum(int a, int b) /* function definition */

{return a + b};

In this example, sum is a function accepting two integers and returning an integer. x and y are
the actual parameters. a and b are the formal or dummy parameters.

2. float area(float radius)

area is a function returning a float and accepts one float argument.
3. int max(int a, int b, int c)

max is a function accepting three integers and returning an integer.

4, int random(void)

This function returns an integer but takes no arguments.

7.7.2 The function body

The function body is enclosed in braces and immediately follows the function header. It consists
of,

i. Declarations: You can declare and initialize variables within a function. These are called local
variables, which means that they can be used only within that function.

(/o C Programming . Function
Uision

iv. stdlib.h

atof double atof (const char *s) Converts a string to float

atoi double atoi(const char *s) Converts a string to int

atol double atol(const char *s) Converts a string to long

random int random(int num) Returns an integer between 0 and (num-1)

Initialize the random number generator with a

i void randomize (void
randomize () random value

system int system(const char * command) | Used to execute an MS-DOS command

7.6 FUNCTION DECLARATION AND DEFINITION

- Just as variables used within a program have to be declared, so as the functions. The function
declaration is called the function protoetype and it provides the following information to the compiler:

° The name of the function
. The return data type (optional, default is integer)
. The number and type of arguments that will be passed to the function

(The argument name need not be specified).

A prototype should always end with a semicolon.

Synnnc return_type function_name(type argl, type arg2 ...);
Examples
I. int sum(int a, int b, int c}; OR 1int sum(int, int, int);

2. void display(veoid);

3. double square(double number);

Function Definition

The function definition is the actual function. The definition contains the code that will be
executed. The first line of the definition called the function header should be identical to the function
prototype with the exception of the semicolon. The argument names have to be specified here.

1.7 WRITING A FUNCTION

Each function definition has the following form:

return_type function_name (parameter list)

{

declarations;
statements;

CPm@mMmMg 3 Function (e

7.7.1 The functicn header

The first line of every function is the function header, which has three components.

i The function return type: This specifies the data type that the function returns to the calling
program. If the function does not return a value, the return data type of void is used.

Examples: int funcl(....) ~/* Returns an integer value */
float func2(....) /* Returns a type float */
void func3(....) /* Returns nothing */

ii. The function name: The function name can be any valid C identifier. The function name has to
be unique and it should be preferably named so as to reflect the purpose of the function.

iti. The parameter list: Function parameters are the means of communication between the calling
and the called functions. They can be classified as:

. Formal parameters (or parameters), which are given in the function header.
. Actual parameters (or arguments) which are specified in the function call.

Each function has to declare the type and name of the parameter. Commas separate multiple
parameters. For each argument passed in the function call there has to be corresponding parameter in
the parameter list in the function headers with the same data type and the order in which arguments are
sent.

Examples

1. main ()
{ int x,y, result;
result = sum(x,y);} /* function call */ }
int sum(int a, int b) /* function definition */

{return a + b};

In this example, sum is a function accepting two integers and returning an integer. x and y are
the actual parameters. a and b are the formal or dummy parameters.

2. float area(float radius)

area is a function returning a float and accepts one float argument.
3. int max(int a, int b, int ¢)

max is a function accepting three integers and returning an integer.

4. int random(void)

This function returns an integer but takes no arguments.

1.7.2 The function body

The function body is enclosed in braces and immediately follows the function header. It consists
of,

i. Declarations: You can declare and initialize variables within a function. These are called local
variables, which means that they can be used only within that function.

(o
uision

C Programming ° Function

ii.

iii.

7.8

Example: float area(float radius)
{ float result;
const float pi = 3.142;
...... /* function code */

...... }

Function statements: These statements perform the specified task. There is no limitation on the
statements that can be included within a function.

However, another function cannot be defined in a user-defined function.

The return statement: The keyword return is used to terminate the execution of the function
and return program control to the calling program.

Syntax: return;

Example: if (n<0)
return;

It is also used to return a value to the calling program. (A function can accept any number of
values but can send back only one).

Syntax: return(expression);

OR

return expression;

Example: return(0);
return(a+b);
return ++i;

A return statement at the end is optional for functions not returning a value. There may be
‘multiple return statements within a function but only the first return statement encountered
during control flow will be executed. ‘

Example: int max(int a, int b)
{ if (a>b)
return a;
else
return b; }

CALLING A FUNCTION

A function can be called by two ways:

ii.

Any function can be called by simply using its name and arguments alone in a statement as
shown. If the function has a return value, it is discarded.

Example: disp_message();

display_value (x);
The second method can be used only with functions that return a value. Since they return a
value, they can be used anywhere. A C expression can be used in a printf statement, on the right
side of an assignment operator, etc.

C Programming . Function (/e

Here are some examples.

1. printf (“Square of %d is % d”,x, square(x));
il. area = calculate_area(radius);
iti. Sum_of_all = sum(a,b) + sum(c,d);

iv. if(sum{a,b)>100)
{ .
/* statements */ }

V. maximum = max(a,b);
vi. max_of_three = max(c, max{(a,b));
7.9 TYPES OF FUNCTIONS
7.9.1 Functions with No Arguments and No

Return Values

These functions do not take any information from the calling function
nor do they pass back any value. Such functions are commonly used to
display messages.

Examples
1. #include<stdio.h>
main ()
{ void greet(void); /* function prototype */
greet () ; /* function call */
}
void greet (void) /* function definition */

{ printf("\n Hello and welcome to C"};

2. #include<stdio.h>

main{)

{ int n ;
void error_msg(void);
printf("Enter the value of n : ");
scanf ("%d", &n) ;
if (n<0)
{ error_msg{();

exit ();

void error_msg(void)
{ printf("Error! Negative value");

}

% C Programming) Function
vision

7.9.2 Functions with Arguments and No Return Value

Here, the function accepts arguments but does not return any value back to the calling program. It
is a one way communication, i.e., calling program to function.

In such functions, the result of operations on the arguments may be displayed from the function
itself.

Program: /* Demonstrate functions */

/* Calculate and display the area of a circle */

7.9.3 Function accepting Arguments and Returning a Value

Such a function accepts information and also returns back a value to the calling program. Thus,
there is a two way communication between the two.

Example

We shall modify the above program such that the function area now returns the calculated value
back to main.

/* Illustrate function returning a value */

C Programming . Function (o
_vision

7.10 METHODS OF PASSING ARGUMENTS

1.

ii.

7.

There are two mechanisms to pass arguments to a function.
Call by value
Call by reference
In C all function arguments are passed by value. C language does not support call by reference.

10.1 Call by value

In this method, the value of the actual parameters gets copied into the corresponding formal
parameters.

Any changes made to the formal parameters will not affect the actual parameters.
In order to illustrate call by value, let us write a function which interchange two numbers.

Program: Interchanging two numbers

Output

Before interchange a=10, b=20
In function x=20, y=10
After interchange a=10, b=20

In this program, the values of the actual parameters, a and b get copied into two different variables

x and y (formal parameters). These formal variables exist only in the function swap. Hence, any
changes made to these formal parameters will not be made to the actual parameters.

main SWﬂP
a b X y
10) 20 10 | 20
1050 3000 2100 \:::::::::/4000
Figure 7.3

mglil)ll C Programming . Function

7.10.2 Call by reference

In this method of passing arguments, the called function has access to the original argument, not
the local copy. Languages like Pascal and Fortran allow this method.

Although C language allows passing of arguments only by value, the call by reference method can
be simulated by the use of addresses and pointers. This allows the function to directly access the.
original variables and modify their values.

We will rewrite the program to interchange two numbers but in a slightly different way.

Program: Simulating call by reference to swap two numbers

Qutput

Before swapping a=10 b=20
After swapping a=20 b=10

In call by value method, the function cannot access the original variables. It can only access
duplicate or copied variables. In order to make changes to the original variables, the function must get
access to the actual variables and not their copies. This is possible if we send the address of the
variable to the function rather than its value. Since the address of any variable is unique, the function
will access the original variable.

The addresses of a and b are obtained using the & operator (address of operator). The addresses are
stored in 2 special variables x and y which are declared as ‘pointer’ variables and they store the
addresses of a and b respectively. *x and *y are the values in a and b respectively. Hence, any changes
made to *x and *y will change a and b as well.

main swap
a b X y

[0] [20] | [10s0] | 3000 |
1050 3000 2100 4000

C Programming o Function (/o

7.11 FUNCTIONS WITH VARIABLE ARGUMENTS

It is possible to declare functions with variable numbers of arguments. Such functions are called
"Variable" functions. Some standard library functions can accept a variable list of arguments (such as
printf).

A function is also defined as variable using an ellipsis ('...") in the argument list. The function is
called by passing fixed arguments followed by the additional variable arguments.

Example: int funcl(int x, ..)

{
}

Here, funcl is a function with one fixed argument and the ellipsis indicates variable arguments.

Accessing Variable Arguments

Since variable arguments have no names, they must be accessed sequentially using special macros
from "stdarg.h". These macros are:
1. va_list
ii. va_start
i, va_end
Example

int addnos(int count,..)
{ va_list ab;
int i, sum; -
va_start (ab, count); /*Initialize the argument list*/

sum = 0 ;
for(i = 0; i < count; i++)

sum = + va_arg{ab,int); /*Get next argument*/
va_end (ab) ; /*clean up*/

return sum;
})
main{)
{ printf ("$d\n", addnos (3,5,5,6));
/* This prints 16 */
printf("s d\n",addnos(5,10,20,30,40,50)); /* This prints 150%/
}

7.12 ARRAYS AND FUNCTIONS
Arrays can be passed to a function in two ways.
1. Element by element

. Passing the entire array :

When the elements are passed to the function, their values are copied into the corresponding
function parameters and cannot be modified by the function, ’

An entire array can be passed as an argument to the function. The function gets complete access to
the original array rather than a copied array.

Before we see how it can be done, it is important to understand the importance of the array name.

(o C Programming . Function
UISion

7.12.1 Name of the Array

Consider the declaration
int n(10};

The name of the array is n. The name n without any subscript refers to the starting address or base
address of the array in memory, i.e., it refers to the memory location of the O™ element of the array.

Thus, n is equivalent to &n[0]. It is a constant pointer and cannot be changed (i.e., incremented /
decremented, etc.).

When we want to pass the array n to a function sum_of_elements, the call will be given as

sum_cof_elements(n);

This makes the complete array available to the function and the function can make modifications to
the original array. '

This is so because by specifying only the array name, we are in effect sending the base address of
the array to the function.

Thus, the name of the array can be used effectively as any other pointer to the array in accessing
the array elements. This is illustrated below.

Program: /* Illustrate array name a

Output

65492 contains 10
65494 contains 20
65496 contains 30
65498 contains 40
65500contains 50

Since al contains the base address, al+0 points to the Oth element and *(al+0) gives the value of
the Oth element.

7.12.2 Passing the Array Element by Element

The array elements can be passed one-by-one to the function. The function thus gets access only to
one element at a time and cannot modify this value. Example as follows:

main ()

{ int n[5] = {10,20,30,40,50};
void display(int); /* function prototype */
int i; .

for (i=0;i<5;i++)

display(n[i]);}
void display(int x)
{ printf("%d",x); }

C Programming . Function ‘ (Fo

7.12.3 Passing the Entire Array

In order to pass the entire array, we just have to send the name of the array to the function. Since
the name contains the base address, we are effectively sending the entire array. The function gets
access to the original array (since it has the base address). It can modify the array contents. Example is
as follows: '

main ())
{ int n{5) = {10,20,30,40,50};
void modify(int b[5]); /* Function declaration */

modify(n); }
void modify (int b[5])
{ int 1i;
for (i=0

;)
b[i] = b

i<5;1i++
(i1 * 2;

In this example, the function modifies the contents of the array n, they are changed to 20,40,60,80
and 100.

Note: b is not a new array created but it is the same as n because b stores the base address of n.

7.12.4 Passing Dimensional Array to Function

The following program illustrates passing of one dimensional array to a function to find the largest
number from the array.

1. /*Passing an array to a function */

UISCI;I)JQII C Programming . Function

Output

How many elements? : 5
Input values:
100

48
Largest number = 2000

Note: The function header could also be written as
int largest (int *x, int n)

In both the cases, i.e., int x[] and int *x, x means a pointer to an int. The loop inside the function
could also be written as '
for (i=1;j<n; j++)

{ if (*(x+7j)>large)

large = *(x+3);

}

In the above programs, we have passed a 1D array to the function. In the same way, we can pass a
2D array to the function as shown below. Program to accept, multiply and display matrices using
functions. :

2 /* Tllustration of 2D Arrays and functions */

C Programming . Function (/o

sy

{printf ("Colum

of A must be equal to rows in B\n");
@

Output a

Number of rows and columns is matrix A : 2 3
Number of rows and columns in matrix B: 2 2
Columns of A must be equal to rows in B

Multiplication not possible.

Qutput b

Number of rows and columns in matrix A : 2 2
Number of rows and columns in matrix B: 2 3
Multiplication possible

Input Matrix A

{1

I 2

Input Matrix B

2 3 1

The resultant matrix is
6 82

1y 133 i

(o . C Programming . Function

wision
7.13 POINTERS AND FUNCTIONS
7.13.1 Pointer as a Function Argument

When we pass a variable to a function, its value is passed to the function which gets copied into
another variable. Any changes made in the function will be made to the function variable and not the

original variable.

To modify the value of a variable in the function, we have to pass its address to the function. When
the address of a variable is passed to a function, it has to be stored in a pointer variable. This pointer
allows access to the original variable from the function..

The following program shows how to modify the values of two variables using a function:
Program: Pointer as function argument

‘Function to Calculate Area and Circumference of Circle and Display the
Results in Main

In order to do this, we will have to pass the addresses of variables to store area and circumference
from main to the function.
void calculate(float r, float *area_ptr, float *circum ptr)

{
*area_ptr=3.142*r*r;
*circum_ptr=2*3.142*r;

In main, the function will be called as :
calculate (radius, é&area, &circum);

7.13.2 Function Returning a Pointer

A function ¢an return a pointer to the calling function. The function header has to be declared as
pointer_datatype * function_name (parameter list)
Example
i. int *fl(int);
f1 is a function accepting an integer and returning pointer to an integer.

C Programming . Function (/o
vision

il. char *f2(int *, int *);

f2 is a function returning a pointer to datatype char and accepting the addresses of two integer
arguments in two integer pointers.

Program: /* This program accepts the addresses of two integer variables and returns the
address of the larger variable to main */

Output
Enter the two numbers: 10 20
The larger value is 20.
7.13.3 Pointers to Functions

A confusing yet powerful feature of C is the function pointer.
Even though a function is not a variable, it still has a physical location in memory.

A function's address is the starting address of the code of the function in memory. This address
assigned to a pointer is the entry point of the function. The pointer can then be used in place of the
function name. It also allows function to be passed as arguments to other functions.

. Function Name: It is a constant pointer pointing to the block of memory where it is stored.
* Declaring Pointer to a function: The syntax for declaring a pointer to a function is:
return_type(* pointer_variable) (function's argument_list);

The * along with the pointer_name acts as the function name.

Example

int (*ptr) (int,int);/* ptr is a pointer to a function accepting two
integers values and returning an integer */

‘"s('{;“ C Programming . Function

. Assigning function address to a pointer: The address of a function can be obtained by only
specifying its name without parenthesis.
The following program illustrates the concepts discussed above:
1. /* Hlustrates pointers to functions */

Output

Enter the two numbers : 10~ 20
The larger is 20
The value is 50.752000

In the following program, we shall calculate the factorial of a number using a pointer to function.
2. /* Hlustrates pointer to function */

C Programming . Function (/o

Output

Enter the number whose factorial is required : 5
The result is 120

7.14 RECURSION

Recursion is a process by which a function calls itself either directly or indirectly. It is called
circular definition. Direct recursion is when a statement in the body of the function calls itself, Indirect
recursion occurs when the function calls another function, which in turn makes a call to the first one.
They are commonly used in applications in which the solution to a problem can be expressed in terms
of successively applying the same solution to subset of the problem. Two important conditions should
be satisfied by any recursive function. ‘

i. Each time the function is called recursively it must be closer to the solution.
ii. There must be some terminating condition, which will stop recursion.

There are many examples of recursion. One of the most common example is the calculation of the
factorial of a number. The factorial can be stated as:

a. The factorial of 0 is 1 and the factorial of any positive integer is the product of all integers from
1 ton. ‘

b. The factorial of 0 is 1 and the factorial of any positive integer n is the product of n and the
factorial of number n-1.

The first definition is iterative while the second is recursive and represented as
n! = n*(n-1)!
(n-1)! (n-1) * (n-2)!

and so on. It continues till n becomes 1. This is where the recursion terminates.

]

1. /* Using a recursive function to calculate factorial */

14 Do

C Programming . Function
Uision

Output

Enter the value of the number: 3
The factorial of 3 is 6.

The function calls are depicted below:

From To
n =3} main main
3~ factorial (2) return3*2* 1
n=2 T
2 ™ factorial (1) retumn 2 * 1

ln=1

no further calls return 1

Figure 7.4
ie., 3! = 3 *factorial (2)
= 3 * 2 * factorial (1)
= 3*2%]
= 6
Advantage

Recursive code is much more compact and often much easier to write and understand than the non-
recursive equivalent.

Disadvantages

Recursive functions may not provide saving in storage since a stack of values being processed has
to be maintained by the system.

It will not be faster than iterative functions because function calls and returns take longer.

More Examples of Recursion
1. Computation of Fibonacci series
0,1,1,2,3,58,......

Each element in this sequence is the sum of the two preceding elements. The series can be
defined by the relations.

fib (n).=n ifn==0 or n==1

fib (n) = fib (n-2) + fib (n-1) if n>=2

C Programming . Function (Je

The following program displays the first ‘n’ fibonacci numbers using a recursive function to
calculate the n™ fibonacci number.

2. /* Fibonacci series */

Output
How many numbers : 3
The first 5 fibonacci numbers are:
01123

The recursion tree in the calculation of the fifth fibonacci number is:

Figure 7.5: Recursion tree

(/o C Programming . Function
uisio
3. The recursive relation can define calculation of greatest common divisor (GCD) of two positive

integers.
ged (x,y) = x, ify==
gcd (x,y) = ged (y,x%y), otherwise

The recursive function can be written as:
int gcd(int x, int y)
{ ‘

if (y==0)

return(x)
else
return{gcd(y,x%y));

and it can be used in main as

/* Calculation of GCD using above function */

Output

Enter two numbers : 25 20
The ged of 25 and 20 is 5

Note: abs is a function which returns the absolute value of its argument.

S.

Write a program to accept a positive integer and displays its
equivalent binary number using recursion.

C Programming . Function (/o

6. Write a recursive function to find the sum of digits of a given
: integer number in a single digit.

@lse
s

7. Write a C program to accept a number from the user and find
out the product of digits of that number using recursion,

Uls{lﬁull C Programming . Function

SOLVED PROGRAMS

1. Write a program using recursive function to print factorial of a
given number.

Ans

2 What will be the output? Give explanation.
i. int gNumber;
int main(void)

{

int i;
gNumber = 1;
for(i=1; i<=10; i++)
{
gNumber = DoubleIt (gNumber);
printf("Final value is %d", gNumber);

}
int DoubleIt (int myVar)

{
return 2 * myVar;
}
Ans
int main (void) statement displays warning "Function should return the value" because no return
statement is mentioned in the main function.

C Programming b4 Function (/o
{ vision
In gNumber =Doublet (gNumber) statement display Error "Function should have prototype”,
because we are declaring function before main.
If we specify the prototype before main () then it display the value, such as
2, 4, 8, 16,32,64,128,
256, 512, 1024, 2048
il int £()

main()

{
£(1);
£(1,2);
£(1,2,3);

}

f(int a, int b, int c)
{ printf("%d %d $d", a,b,c);}

Ans

fis a function which accepts 3 integers.

a. Call for function f(1) shows an error too few parameters to call f.
b. Call for function f(1,2) shows an error too few parameters to call {.

c. Call for function f(1,2,3) will be executed and gives output 1 2 3.
Output: 123

EXERCISES

Predict the output

main ()

{ int i;
for(i = 1; i<=5; i++)
{ printf("&d",i);

main();

}

}

main{)

{ int a = 10, b = 15;
change (a, &b);
printf ("%$d%d", a,b);

}
change {int x, int *y)
{ x = 20;
*y= 30;
}
main()
{ abc(100,200)
} ,
abc(int n)
{ printf("%d",n);
}

C Programming Function -

main ()

{ int 1 = 5, j = 10;
abc (i, 3);
printf("i = %4d", 1i);
printf("\n j = %d", Jj);

}
abc(int i, int 3J)
{ 1= 1+3;
j o= 1i-3;
i=1-3;
}

Programming exercises

Write a function to calculate the roots of a quadratic equation.

Write a function that takes two integer parameters and returns the sum of all integers between
them.

Write a function power which accepts two integers x and y and returns x’.

Write a function ctoi which accepts a character and returns its integer equivalent if it is a digit
and returns —1 otherwise.

Example: ctoi(ch) should return integer 5 if ch has value '5'.

Write a recursive function to calculate and return the sum of digits of a number. Example: Sum
of digits of 397=19. '

Modify the above function such that the sum of digits is a single digit number.
Example: Sum of digits of 397 =1
Write a recursive program to find the multiplication of two integers.

Review questions

W PN R W= N

—
- O

Define a function and illustrates how it works.

What are the advantages of using functions?

What are library and user defined functions?

What do you mean by a function prototype?

State the different parts of a function? Explain the function header.

What are formal and actual parameters?

Tllustrate with an example function declaration, function definition and function call.
What is a local variable? Explainv using examples.

Explain call by value and call by reference.

What is recursion? Explain with examples.
What is the meaning of the following declarations?

i. int f(float, char); ii. void g(int, int, int); ili. double h(void);

C Programming Function

/).
VISEnM

Storage Classes And Scope

8.1 MEANING OF TERMS

Every variable in a program has some memory associated with it. Memory for variables is
allocated and releasea at Zifferent points in the program.

The scope of a variable can be defined as the region or part of the program in which the variable is
visible or valid. Visible here also means accessible.

When speaking about scope, the term variable refers to all C data types: simple variables, arrays,
structures, pointers, symbolic constants, etc.

Scope also affects a variable's extent or lifetime.

Extent: This is the period of time during which memory is associated with a variable. In other
words, a variable lifetime is how long the variable persists in memory. '

Storage class refers to the manner in which memory is allocated by the compiler to variables.
The storage class determines the scope and the lifetime of a variable.

Storage classes are:

i. auto
ii. static
1i. extern

iv. register

8e1

C Programming . Storage Classes and Scope

We have written a number of programs so far and have not used any of these classes as yet. The
reason that the previous programs compile and run is that if no class is mentioned, a default storage
class will be assigned depending upon the context in which the variable is used.

8.2 SCOPE

A demonstration of scope

1. /* Illustration variable scope */

Output

Compiler error: The variable n is defined within main and is visible only in function main. If
cannot be accessed in the function display. :

We will now make a small modification to the above program.

2. /* Hlustrates variable scope */

% C Programming . Storage Classes and Scope

vision

We have made a minor modification in the first program by moving the definition of n outside
main (). By doing so, we have changed its scope.

In program 1, n is a local variables, i.e., its scope is limited to the block where it is defined.

In program 2, n is a global (external) variable and its scope is the entire program.

Block Scope and File Scope

The scope of an identifier falls under two categories

i. Block scope (or local scope)
ii. File scope
i. Block Scope: An identifier is said to have local or block scope if it is defined within a function

or a block. It can be used only within that function or block. It cannot be used outside. Such
identifiers are called local identifiers.

ii. File Scope: If an identifier is defined outside a function it can be used in any function in the
program, i.e., it has a visibility over the entire file. Such identifiers are called global identifiers.

Examples: /* Local and file scope*/

#include<stdio.h>

int n = 20;

main()

{ int m = 10;
disp_values(}); }

void disp_values ()

{ printf("sd %d4d", m,n); }

In this program, variable n has file scope whereas m has block scope. n can be used in any function
in the file whereas m can only be used in function main because it has been defined in main.
Advantages of Block Scope

1. Data integrity is preserved since a function cannot access the data of another.
2. Only the necessary data can be passed to a function thus protecting the remaining data.

Advantages of File Scope

1. If some common data is needed by all functions, passing it as parameters will not be feasible.
Making it global will be much easier.
2. Any changes made to the global data by a function can be seen and used by other functions.

Disadvantages of File Scope

1. If too many variables are made global, they will remain in memory till program execution is
over. Thus, memory will remain allocated even when they are not being used.

2. Any function can modify global data. Hence data cannot be protected.

C Programming L4 Storage Classes and Scope (o

8.3 STORAGE CLASSES

The storage class of a variable determines

i. where it is stored,

ii. its default initial value,
iii. scope of the variable,
iv. lifetime of the variable,

We shall now study the four storage classes

8.3.1 Automatic Storage Class

This is the default storage class of variables that are declared within a function. (All the variables
that we have studied in previous chapters belong to this class).

In order to explicity declare a variable which belongs to this class, the keyword auto is used.

Example: auto int i;

This variable comes into existence only when the function (where it is defined) is called and ceases
to exist after the function is exited; hence termed automatic.

Features

i. Storage : Memory

ii. Scope : Local to the block where it is defined. (Block scope)

iii. Lifetime : It exists as long as control remains in the block where it is defined.
iv. ' Default initial value : Garbage.

Program: /* lllustrate automatic variables®/

Output

20
10

In this program, the two variables i are different variables since they are defined in different blocks.

Ulgl;;®H C Programming i Storage Classes and Scope

8.3.2 Extern Storage Class

Variables belonging to this class are also called as global variables or external variables. They are
declared outside all functions and are accessible to all the functions in that source code file.

The variable n in (Refer point 8.2, program 2) is a global variable. In this program, n is declared
outside main() which makes it accessible to all the functions in that file.

In some cases, however, the program code may extend over two or more separate files. In such a
case, special handling is required for external variables.

Use of Extern Keyword

If the function uses an external variable, it is a good programming practice to declare it again
within the function using the extern keyword.

The syntax is

extern data_type var;
Example

/* Illustrates external variables */

Note

i The declaration within the function indicates that the function uses an external variable, which
is defined elsewhere.

it. If both these functions are in the same source code file, the declarations are not required.

iit. If the variable n is to be used in functions written in separate source code files, the declaration
using the extern keyword is required.
Features

i. Storage : Memory
ii. Scope : Filescope

C Programming L4 Storage Classes and Scope (e
? J vision

iii. Lifetime : It exists as long as the program which uses the variable is running. It retains its
value between functions.

iv. Default initial value : Zero

Uses of Global Variables

1. Use of global variable simplifies communication, i.e., they need not be passed to functions,
(thereby making argument lists shorter) and any function can use them whenever required.

2. Symbolic constants are often declared globally.

Disadvantages
I By using external variables, the principles of modular programming i.e. data isolation is
violated.

2. Even when not required, external variables persist in memory.

3. Variables can be changed in unexpected and inadvertent ways and it is difficult to keep track of
the changes made thereby leading to problems.

8.3.3 Static Storage Class

Local variables are automatic by default, which means that every time the function in which they
are declared is called, they are created and destroyed when the function ends. They do not retain their
vilue between functions calls.

However, in many cases it is required that a variable retains its value between function calls. This
1 possible if the variable is declared belonging to the static storage class.

Syntax: static data_type variable;

Example: static int x;

static long factorial;

Types of Static Variables

i. * Local static variables: These variables have block or function scope and they retain their
value between calls to the function.

ii. Global static variables: They are global to the file in which they are defined. Unlike an
ordinary external variable, which is visible to all functions in the file and functions in other
files, a static external variable is visible only to functions in its own file.

Program: /* Illustration of local static variable and automatic variable */

(o C Programming e Storage Classes and Scope

ision

Output

Icount=1 scount=1
Icount=1 scount=2
lcount=1 scount =3
lcount=1 scount=4
Icount=1 scount=35

The result shows that every time function increment is called lcount is created and initialized to 0
whereas scount is initialized only once and its value persists between function calls.

Features

i. Storage : Memory

ii. Scope : Block or file scope depending upon where it is declared.
iii. Lifetime : Persists between function calls if scope is block scope.
iv. Default initial value : Zero.

8.3.4 Register Storage Class

The register keyword is used to tell the compiler to store the variable in a CPU register rather than
in main memory. The register variables have similar features as the automatic storage class except for
the storage location.

Register Variables

The CPU has its own limited storage locations, which it uses for actual data operations. These
locations are called registers. To manipulate data and perform operations, the CPU moves data back
and forth between the memory and registers, which takes a finite amount of time.

Thus, if a particular variable is kept in the register itself, the CPU can access it faster. Hence,
variables, which are heavily used, may be declared of this type so that execution is faster.

Syntax: register data_type variable;

Example: register int i;
register char ch;

C Programming . - Storage Classes and Scope (/o

_vision

Limitations

L. There are only a limited number of registers in the CPU. So, a register may not be available for
the variable. In such a case, the variable is treated as an ordinary automatic variable.

2. Most compilers allow this storage class to be used only with integer data type. (int or char)

3. The unary & operator (address of) cannot be used with these variables either explicitly or

implicitly.
4. It cannot be used with either static or external storage classes.
5. It cannot be used for structures, arrays or unions.
Features

i. Storage : CPU registers
ii. Scope : Block scope
iii. Lifetime : Exists as long as control is within the block where it is defined

iv. Default initial value : Garbage

Summary

The following table summarizes the storage classes, scope and initializations.

5

Qutside a

Static function Are initialized only once, Values retained through

Anywhere within the file

. function calls, default initial value is zero.
, Inside a

function block Function/Block Scope

If they are to be used in multiple files, they have to

Outside a - . be declared in each function using the extern

Extemn function Anywhere within the file keyword. Initialization can be done only once-
" | outside the functions.

Inside a) Limited number of registers, restriction on the type

Register function/block Function/block scope of variables, cannot use pointers for register
variables, no default value.

Inside a Function / block scope, Variable is initialized each time the function / block

Auto function/block i.e., local to the is entered, no default value. Does not exist outside

function/block function block where declared.

UIgl%)ll C Programming L Storage Classes and Scope

EXERCISES

A. Predict the outputs

1. main()

{ int 1 ;
i = abc();
printf("%d...";1);
i = abc();
printf ("%d",1i);

}

static int abc()

{ int 1 = 1;
return i++;

}

2. extern int 1 ;
main()
{ printf("%d",1i);
}

3. static int i = 100;
main()
{ static int i = 200;

abec();
printf ("%d",1i);

}
abc ()
{ printf("&d..", 1i);
}

4, /* File aa.c */
int a = 100;
/* File bb.c */
#include "aa.c"
extern int a;
main ()
{ printf("%d",a);
}

B. Review Questions

1. What do the following terms mean?
i. Scope ii. Extent iii. Storage class
2. What do you mean by block scope and file scope? Explain with examples.

C Programming L4 Storage Classes and Scope (o

. What is meant by the storage class of a variable? Name the different storage classes in C.
. What is meant by local variables?

Distinguish between local and global variables.

3
4
5
6. What are static variables? What are the two types of static variables?
7 Differentiate between automatic and static storage classes.

8 What is the purpose of the extern keyword?

9 What values does an un-initialized global variable contain?

10. What do you understand by block scope of a variable? How does nested blocks affect its
accessibility?

11. What are the advantages and limitations of the register storage class?
12. When is the register storage class most useful?

13. Discuss different storage classes in C.

14. Write two differences between auto and static variables.

Structure, Union,

Enumeration And typedef

9.1 STRUCTURES

Structures are also called 'records' in some languages like PASCAL. The use of structures helps
organize complicated data, particularly in large programs because they permit a group of related
variables to be treated as a unit rather than as separate entities.

Definition
A structure is a composition of variables possibly of different data types, grouped together under a
single name. Each variable within the structure is called a 'member'. The name given to the structure is

called a 'structure tag'. The data type of the variables could be any of C’s data types including arrays,
pointers and other structures.

9.1.1 Declaring and Initializing Structure

A structure can be declared in the following way.

Syntax: struct tag
{

memberl;
member2;

membern;
}i

C Programming L4 Structure, Union, Enumeration . . . (o

Examples

1. struct student

{
char name[20];
int rollno;
int marks;

bi

2. struct data
{
int day;
int month;
int year;
}i
The struct keyword is used to declare structures. The members of the structure are enclosed in { }.
A structure declaration as above reserves no storage. It merely describes a ‘template’ or shape of a
structure.

Memory is allocated only when ‘instances’ or variables for the structures are created.
There are two ways to create instances of a structure.

1. struct tag
{

structure_members;
} instance;

1i. struct tag
{

structure_members;
}i
struct tag instance;

In (i), the instances are declared immediately after the structure template.
In (ii) the instances are declared later using the structure tag.
Examples

1. struct student
{ char name[207;
int rollno;
int marks;
} studl, stud2;

2. struct student
{ char name[20];
int rollno;
int marks;
}i
struct student studl, stud2;

mg;l))@II C Programming g Structure, Union, Enumeration . . .

name rollno marks
studt l l l |

2000 2020 2022
stud2 | I] |

5010 5030 5032

Initializing a Structure Variable

An instance of a structure can be assigned values during declaration.

i. struct student
{ char name(20];
int rollno;
int marks;
} studl = {"ABCD",10,95};

ii. struct time
{ int hours;
int minutes;
int seconds;
} time_of_birth = {10,15,0};

If there are fewer initializers than the members, the remaining members are initialized with O.

9.1.2 Accessing Structure Members

Individual members of the structures can be used just like other variables. Structure members can
be accessed using the structure member operator (-) also called the dot operator. This operator is used
between the structure name and the member name.

Syntax: variablename.fieldname

Example: The individual members of the structure variable stud] in the previous example, can be
accessed as

studl.name
studl.rollno
studl.marks

Values can also be assigned to those members.

strcpy (studl.name, "xyz");
studl.rollno = 100;
studl.marks = 80;

They can be read and displayed using the scanf and printf functions.

scanf ("%s%d%d", studl.name, &studl.rollno, &studl.marks);
printf("%s%d%d",studl.name,studl.rollno,studl.marks);

C Programming . Structure, Union, Enumeration . . . %

9.i.3 Complex Structures
i. Structure within a Structure

The individual members of a structure can be other structures as well. This can be done in two
ways:

a. struct date

{ int day;
int month;
int year;

}i

struct student
{ char name[20];

int rollno;

struct date birthdate;
int marks;
} studl;

b. struct student
{ char name[20];
int rollno;
struct date
{ int day;
int month;
int year;
} birthdate;
int marks;
} studl;

In (a) date is declared as a separate structure. Thus it can be used as any other structure.
In (b) date is an embedded structure and cannot be used directly elsewhere.

Accessing members of nested structures: The members of variable stud1 will be

studl.name
studl.rollno
studl.birthdate.day
studl.birthdate.month
studl.birthdate.year
studl.marks

Example

struct addition
{ float da;

- float hra;

}i
struct deduction
{ float itax;

float ptax;
}i

o

C Programming L4 Structure, Union, Enumeration . . .

struct employee
{ char name[20];
float bas_sal;
struct addition add;
struct deduction deduct;
} el;

The individual members are

el. name
el.bas_sal
el.add.da
el.add.hra
el.deduct.itax
el.deduct.ptax

Initialization

To initialize variables that belong to a structure containing a nested structure, the initialization
values have to be given in order.

Example: struct student studl = {"ABCD",10,
{10,12,1985}, 95};

Structure containing an array.

A structure can contain zrrays as its members. For example, if we wish to store the information
about the marks ot 3 subjects of a student, the declaration will be

struct student

{ char name([201];
int rollno;
int marks{31}1;
int total;

} studl;

The members will be

studl.name, studl.rollno,
studl .marks [0]
studl.marks[1]
studl.marks{2]

9.1.4 The dot operator

The dot operator is in the highest precedence group in the precedence table and has a priority over
unary, arithmetic, relational, logical and assignment operators.

The expression ++ studl.rollno is equivalent to ++ (stud1.rollno).

C Programming L4 Structure, Union, Enumeration . . . (o

9.1.5 Size of a Structure
The size of a variable of a structure is the sum of sizes required for its individual members.

Example: struct student
{ char name[20];
int rollno;
int marks;
} studl;

Size of studl = size of name + size of rollno + size of marks
204242 = 24bytes

The size of a structure variable can be found using the sizeofoperator.

1l

9.1.6 Operations on a Structure ;

i Copying one structure variable’s members to another: The values of the members can be
assigned to those of another variable by assigning them individually as shown below.
struct date datel = {1,1,1900}

struct date date2;
date2.day = datel.day;
date2.month = datel.month;
date3.year = datel.year;

A better and convenient way is to use the assignment operator directly.

date2 = datel;
structure_variablel =structure_variable2

This is a perfectly valid assignment.

ii. The sizeofoperator can be used on a structure.
It will give the number of bytes required for a variable of the structure.
Example: sizeof (struct date) will give 6

i. A structure variable can be passed as a parameter to a function.

iv. .The address of a structure can be obtained using the & (address of) operator,

V. A function can accept or return a structure variable or a pointer to a structure.

9.1.7 Array of Structures

It is possible to declare an array of structures just like any other array. This array will have

individual structures as its elements. The array can be declared when the structure is declared or later
using the structure tag. All array elements occupy consecutive memory locations.

Syntax: struct tag array_name|sizel;

Example: struct student stud[10];

Ulglfloll C Programming . Structure, Union, Enumeration . . .

Accessing Elements of the Array

name rolino marks

stud [0]
stud [1]

stud [9]

Individual elements can be accessed as:

stud[0] .name
stud[0].rollno
stud[0]) .marks

Initializing the Array of Structures

Consider the declaration
struct student stud(4];

The stud array can be initialized as shown.

struct student stud[4]=
{ "aBC",1,89,

"DEF", 2,64,

"GHI", 3,75,

"JKL", 4,90 ;,

stud[0] to stud[3] are stored sequentially in memory.

We shall now write a program to store the data of 10 students, viz., name, rollno, marks in three
subjects and percentage. The percentage will be calculated. The display should be of all students

scoring 70 percent or more.
We shall be using the concept of structures studied so far.

1 /* Ilustrates structures */

Structure, Union, Enumeration . . .

in Software company which
ification, vear of joining, total
the informatien of employee
wd mindmum salary,

5liflca€icn of
ieation): o
of Joiding of Emp

Enm

Emploves® s

Salary of Employvee");

bl isalary);

(o C Programming ® Struciure, Union, Enumerstion . . .
Vision = ’ ’

3. Create a structore item havipg ltem Id, &
the detaiis for 50 records and find out the i
price and lowest price. Display the vepori.

g maximum pr

g minimum price it

ximum pricein");
Ldml] vitem dd)

C Programming L4 Structure, Union, Enumeration . . . (e

9.1.8 Structures and Pointers

i. A pointer within a structure: A structure can have a pointer as one of its members. They can
be used just like any other pointer variables.

Example: struct data
{ int *amount;
char *itemname;
}item;

They can be used as illustrated below-

item.amount = &cost;
item.itemname = "steel";

They can be de-referenced using the * operator. The expression *item.amount evaluates to the
value of cost. item.itemname points to the string “steel” stored elsewhere in memory.

il. Pointer to a structure: The address of a structure variable can be obtained by using the &
operator. This address can be assigned to a pointer variable, which has to be declared as a
pointer to a structure as illustrated below.

struct student
{ char name[20];
int rollno;
int marks{3];
} studl;
struct student *ptr; /* pointer to struct student */
ptr = &studl

name rolino marks[0] marks[1] marks[2]
swdt [|] | | |
2000 2020 2022 2024 2026

e

4058
Accessing members: There are three ways by which members of stud1 can be accessed:

a. Using the structure name
studl.name, studl.rollno
b. Using the pointer and indirection operator

(*ptr).name, (*ptr).rollno

(/e
uision

C Programming L4 Structure, Union, Enumeration . . . '

c. Using the pointer and the membership operator
ptr->name, ptr->rollno, ptr->marks[i]
Following example illustrates incrementing a pointer to a structure variable. Incrementing
causes the pointer to point to the next structure variable.
Pointer to an array of structures: A pointer variable can be made to point to an array of
structures by assigning it the base address of the array. The array elements can be accessed by
incrementing the pointer. Incrementing causes the pointer to point to the next structure variable.

Program: Illustrates pointer to a structure arra

Qutput

At address 96 : ABC 1
At address 108 : DEF 2
At address 120: GHI3
At address 132: JKL 4

iv.

This can be depicted pictorially as:

¢—StW[0] —5 ¢—StU[1] —3e—stu[2] —

96 106 108 118 120
A A

96 ptr++ 108} -....

ptr

A pointer to a structure within the same structure (self referential structure): In this typc
of structures, the structure contains a pointer to itself.
These type of structures are widely used in data structures like linked lists, trees etc.

struct node
{ int data;
struct node *ptr ; /* pointer to struct node */};

v.

C Programming d Structure, Union, Enumeration . . . (o

In this example, the structure node contains a pointer toitself. We can see its use in a linked
list. A linked list is a collection of nodes each linked to the next using a pointer.

List ——t> 10 20 NULL
node node

Dynamically allocating memory for each node and then linking the node can create this list.

Array of Pointers to Structures: In the last chapter we saw an array of pointers to strings.
Similarly, we can have an array of pointers to structure elements.

They are very useful in dynamic memory allocation, which saves a lot of memory space.

Example: struct student
{ char name({20];
int rollno;
} *sptr[l0];

Here sptr is an array of 10 pointers to struct student. We would use an array of pointers when

we do not know how many students there are initially. So declaring an array of a large number

of students will cause a lot of memory wastage. Hence, we can dynamically allocate space for

‘n’ students and store the address in the array as shown below.

printf ("How many students?");

scanf ("%d", &n);

for (i=0;i<n;i++)

{sptr([i] =(struct student *) malloc(sizeof (struct student));
scanf("%s%d",sptr{i]~>name,sptr[i]—>rollno); }

/*Displaying data */

for (i=0;i<n;i++)

printf("\n Name:%s Rollno:%d",sptr[i]—>name,sptr[i]—>rollno);

Each student record is stored at different memory locations, since we are allocating memory for

individual members. Their addresses are stored in the array of pointers using which we can

access individual members. ~

<——name_ roll no

sptr[0] [6010 |—s]]

6010 6030
2500 “—‘“ﬂ l ‘1
! 4 2500 2519

sptr{n-1] 1005

[

1005 1025

|

114

sptr{9]

Ulgf;)ll C Programming . Structure, Union, Enumeration . . .

vi. Some declarations and their meanings: The structure operators. and — together with () for
function calls and [] for subscripts are at the top of the precedence hierarchy.
Example: struct {

int len ;

char *str;

}orpi
Then
++p —>len; increments len because it is equivalent to ++ (p—len)
(++p) —>len; increments p before accessing len
(p++)—>len; increments p afterwards
*p->str; fetches whatever str points to
~ *p->str ++; increments str after fetching whatever str points to

(*p—> str)++; increments whatever str points to
*p++—>str; increments p after accessing whatever str points to

@ ™ e e o

9.1.9 Using typedef with Structures

The typedef keyword can be used to give a new type name for the structure. The new name can
be used to create instances, passing values to functions and declaring pointers, etc.

Examples

1. typedef struct
{ char name[20];
int rollno;
int marks;
} student;

2. typedef struct studrec
{ char name{20};
int rollno;
int marks;
} student;

student is the name of the new type. In (2) studrec is the tag namc, which is not needed but
used for clarity.

Variables of this type can be created by the statement:
student studl, s[100],*ptr;

Examples
1. typedef struct
{ int day;

int month;
int year;
} date; /*date is a new data type */

C Programming L4 Structure, Union, Enumeration . . . (e

2. typedef struct
{ char name[25]};
date birthdate;
char address{50];
} person; /* person 1s a new data type */
person list{10]; /* list is. an array of 10 elements of type person */

9.2 STRUCTURES AND ENUMERATED DATA TYPE

Enumerated data types can be used as a part of a structure as illustrated in the example below.

Program: Illustrates enumerated data type

Structures and Functions

i. Passing structures to functions: It is possible to send an entire structure to a function as an
argument in the function call. The following program illustrates this.

/* Demonstrate passing a structure to a function */

(o
uision

C Programming . Structure, Union, Enumeration . . .

fo-sname, in

Similarly, a function can also return a structure.
For example, struct student acceptdata(); is a function which returns a structure of type student.

Passing an array of structures to functions: In the above program, we passed individual
structure items to the function. However, we can pass the entire array to the function just like
any other array.

Example: void acceptdata(struct data record[], int n);

Accepts an array of structures and an integer n. The call to this function can be given as
acceptdata(list, 10);

where list is an array of structures as seen in the previous example.

Example: We shall now write a program to store student information of n students and display
the information in descending order of total marks. We will use functions.

C Pragramming Structure, Union, Enumeration . . .

9.3 UNION

A union is analogous to a variant record in PASCAL. It is very similar to a structure but only one
of its members can be used at a time.

Definition

A union is a variable that contains multiple members of possibly different data types grouped
together under a single name. However, all of them occupy the same memory area. Hence, only one of
the members will be active at a time.

Unions provide a way to manipulate different kinds of data in a single area of storage. There are
many applications where we would want to store different data terms at different times. A union
provides a facility to do this.

9.3.1 Declaration of a Union

A union is declared in the same way as a structure except that the keyword 'union' is used instead
of ‘struct’.

Syntax: union tag
{ union_members;
} instance;
Example: union u
{ char s[5];
int num;
boul;

“ISCI%QII C Programming . Structure, Union, Enumeration . . .

ul |Byte0 | Byte1 |Byte2 |Byle3 | Byte 4

num

The variable ul will be allocated sufficient storage for the variable to accommodate the largest
member of the union. In this example, it will be allocated 5 bytes.

Only one member, i.e., either the string or the integer num will be stored and can be accessed at a
time. Both do not exist simultaneously.

9.3.2 Accessing Members of the Union

Union members can be accessed using the dot operators, i.e.,

union_variable.member

If we have a pointer to the union (similar to the pointer to a structure), the members are accessed
using the—>operator.

union_pointer->member
Example: union u *ptr = &ul; /* Initialize pointer to union */

The following expressions are valid:

ul.s ptr—>s
ul.num ptr—>num
9.3.3 Initializing a Union

Since only one member of the union can be used at a time, only one can be initialized.

The initializer for the union is either a single expression of the same type or a brace enclosed
initializer for the first member of the union, i.e., only the first member can be initialized.

9.3.4 Union wiqhin a Structure and Union

Just as it is possible to include one structure within the other, the same can be done with unions.

This can be better understood with an example. Suppose we wish to store employee information
viz., name, id and designation.

If the designation is 'M' (for managers) the number of departments he manages should be stored
and if his designation is 'W' (for workers), his department name should be stored.

The structure and union declarations will be:
union info

{

int no_of_depts;

C Programming . Structure, Union, Enumeration . . .

char deptname[20];

bi

struct empre
{ char name[20];
int id;
char desig;
union info details;

} emp{1007;
9.3.5 Structure Assignment
i. strcpy(emp[d}.name,"ABC");

emp[0].id = 1015;
emp[0] .desig = 'M';
emp (0] .details.no_of_depts = 3;

ii. strepy (emp[1] .name, "XYZ") ;
emp[l].id = 2008;
emp([l].desig = 'W';

strepy(emp{l].details.deptname, "Manufacturing");

9.3.6 Operations on a Union

i. A union variable can be assigned to another union variable.

ii. The address of the union variable can be obtained using the address- of operator.
iii. Only the first member of the union can be initialized.

iv. A function can accept and return a union or a pointer to a union.

V. The sizeof operator can be used with a union.

vi. The typedef keyword can be used to create a synonym for a union. Instances can then be
created using this synonym.

Example: typedef union
{ int no_of_depts;
char deptname{107];
} info;
info details; /* Instance of info */

9.4 DIFFERENCE BETWEEN STRUCTURE AND
UNION

Although the syntax for declaring and accessing structure and union variables is the same, there are
important differences between them.
i. Memory allocation
Each member of a structure is allocated memory space, i.e., a structure variable occupies the
sum of sizes of all members in the variables.
In case of a union, the amount of memory required is the same as its largest member.

C Programming . Structure, Union, Enumeration . . .

Accessing members

All the structure members can be accessed at any given time.
Only one member of the union can be accessed at any given time.

Initialization

All members of a structure variable can be initialized.
Only the tirst member of a union variable can be initialized.

SOLVED PROGRAMS

1.

Create structure Elect Bill having members consumer_no, name, no_of_units, amt. Write
a program to accept 10 records.

Calculate amt — using following rate. -
For no_of _units less than 100 - rate Rs. 1.50 per unit. Oct. 2010~

no_of_units greater than 100 - rate Rs. 6.50 per unit. - e
Display the records of largest and smallest amt.

Structure, Union, Enumeration . . .
ion (name,

format

in
student

studént

ina
format

the

stores
taken to the course)

C Programming

3

1SS

te a C program that

Wr

%MM,@&%/;;% R
S e &
o

dat" file. Read
ith their age.

long w

on a

1

.

student

isplay all
t should be age wise.

on

dob, adm
the file and d
The lis

z%;.
R

.Structure, Union, Enumeration . . .

C Programming

(7@
UisI0n

C Programming . Structure, Union, Enumeration . . . %

3." What will be the output of the following program? Give the explanation.
Void main ()
{
struct employee
{
unsigned id: 8;
unsigned sex: 1;
unsigned age: 7;
};
Struct employee emp = {203, 1,23};
clrscr();
printf("$dsdsd”, emp.id, emp. sex, emp.age);
getch();

}

Ans .

This program displays four errors and one warning.

Error

1. Too many initialization. That means we are initialized many time the program of a particular variable.

2. id is not a member of employee. In this program, we are using the column with every variables
when we define the template of structure and when we access the variable that time we do not
use the column, so it displays the above message. Example: id instead of id:.

3. Sex is not a member of employee. In this program, we are using the column with every
variables when we define the template of structure and when we access the variable that time
we do not use the column, so it displays the above message. Example: sex instead of sex:

4. age is not a member of employee. In this program, we are using the column with every variables
when we define the template of structure and when we access the variable that time we do not
use the column, so it displays the above message. Example: age instead of age:

Warning: emp is assigned a value that is never used.

A. Predict the output

1. struct student
{ char name[20];
int rollno;
} sl,*ptr,s[10];
printf ("\n $d"sizeof (sl));
printf("\n%d"sizeof(ptr));
printf("\n %d"sizeof (s));
2. main ()
{
struct {
int 1i;
} *ptr;
(&*ptr)—i = 10;
printf("sd",ptr —i)
}

(o
uision

C Programming . Structure, Union, Enumeration . . .

main ()

{ struct a
{ int 1i;

}i

struct a a;

a.i = 100;

printf ("%d4d", a.i);

}

struct abc

{ int i ;

}i

main()

{ int abc = 20;
.struct abc m ;
m.i = 200;
printf("%d",m.1i);
printf (("\n%d", abc);

}

union

{
union
{ char a;

char b;
} car;
union
{ int 3;
int k ;
} abc;
float z;
} par;
printf ("%d", sizeof (par));
Programming exercises

Write a program to accept student data_name, roll numbers and marks of 3 subjects. Calculate
the total and arrange these records in descending order of marks.

Accept book details of ‘n’ books viz., book title, author, publisher and cost. Assign an accession
numbers to each book in increasing order. Display these details as

i. Books of a specific author

ii. Books by a specific publisher

iii. All books costing Rs. 500 and above

iv. Information about a particular book (accept the title)

v. All books

The above five should be options for the user.

Write a program to store information about ‘n’ employees. The details are :

name, emp_id, designation(M-Manager, D-Director, W-worker, details (for director-years of
experience, for manager-name of the department, for worker-his specializations viz., electrician,
mechanic, draftsman, etc.)

Use a menu to display details of: i. All directors ii. All managers iii. All workers

Read cricket player information — Name, Player Type and Score. The score depends on Player type.
If batsman- store batting average .If bowler store no. of wickets :

If wicketkeeper — store no of stumpings
Display the name of batsman, bowler and wicketkeeper with best performance

C Programming o Structure, Union, Enumeration . . . (%

Read names and addresses using a structure and rearrange the data in alphabetical order of
names and display.
Review questions

How is a structure declared and initialized? Give an example.

How is a union declared? Can it be initialized? Explain.

Define: 1. Structure ii. Union

What are the differences between a structure and a union? Ilustrate with an example.
How can an array of structure be declared? Can it be initialized? Give an example.
Explain nesting of structures. How can members of nested structures be accessed?

7%
visio

C Preprocessor

10.1 WHAT IS A PREPROCESSOR?

A preprocessor is a program that processes or analyzes the source code file before it is given to the

compiler.
It performs the following tasks:

i. Replaces trigraph sequences (not covered in this book) by their equivalents. Trigraph sequences

are used to handle non ASCII character sets.
ii. Joins any lines that end with a backslash character into a single line.
iii. Divides the program into é stream of tokens.
iv. Remove comments, replacing them by a single space.
V. Processes preprocessor directives and expands macros.
vi. Replaces escape sequences by their equivalent internal representation.

vii. Concatenates adjacent constant character strings.’ :

10e1 C}@
vision

C Programming . C Preprocessor (o
. vision

. 1C source code
IC

C
preprocessor

A

; object . [.. executabl
Compiler i—="== Linker ——m-ei

A

directives?

modified/
expanded
Preprocessor performs code
necessary action
Figure 10.1
10.2 PREPROCESSOR DIRECTIVES

Preprocessor directives are special instructions for the preprocessor.

i. They begin with a # which must be the first non-space character on the line.
ii. ~ They do not end with a semicolon.
iii. Each preprocessing directive must be on its own line.

Preprocessor directives come under three categories

a. Macro substitution directive

b. File inclusion directive
c. Conditional compilation directive
10.2.1 Macro Substitution Directive

A macro is a small subprogram which contains executable code and is similar to a function.
Wherever a macro name occurs in a program the preprocessor substitutes the code of the macro at that
position (unlike a function). The e€xecution is faster since time is not wasted in function call and return.

i. Simple substitution macro
#define macro_id value °~

#define is a preprocessor directive that defines an identifier and a value that is substituted for
the identifier each time it is encountered in the source file. :

We have already used this directive to define symbolic constants.

(o
wigion

C Programming . C Preprocessor

The identifier is usually written in uppercase to distinguish it from other variables.

. A second #define for the same 1dent1ﬁer is erroneous unless the second value is exactly
identical to the first.

. Use of macros enhances readability of the program.

Examples

1. #define PI 3.142

2. #define TRUE 1

3. #define AND &&

4. #define LESSTHAN <

5. #define GREET printf (“Hello”);

6. #define MESSAGE “Welcome to C”

7 #define INRANGE (a>=60 && a<70)

Every occurrence of the macro-id in the program will be replaced by its corresponding value.

Example: int a = 50;
1f (INRANGE)
printf (“First class”);

Argumented Macros

An argumented macro is also called a function macro. The macroname can have arguments.
Each time the macroname is encountered, the arguments associated with it are replaced by the
actual arguments found in the program.

Advantages ‘

a. Their arguments are not type sensitive. Therefore we can pass any numeric variable type
to an argumented macro that expects a numeric argument.

b. Argumented macros execute much faster as compared to their corresponding functions.

Example _

L. #define HALFOF (x) ((x)/2)

result = HALFOF (10);
The occurrence of HALFOF is replaced by
Result = ((10 /2));

The reason for enclosing x in () is that the parameter could also be an expression in
which case, the expression has to be first evaluated. If it is not enclosed in (), it may yield
wrong results.

Example: result = HALFOF (10+2);

This will be evaluated as
result = ((10+2)/2)

C Programming o C Preprocessor

Thus giving the correct result. If no brackets are used, it would evaluate to
result = (10+42/2);
thereby giving the wrong result.
2. #define LARGER(X,y) (()>(y) 2 (x) : (y))
3. All the parameters of the macro must be used in the substitution value, i.e.,
#define ADD(x,y,z) ((x) + (y))
is invalid because Z is not used. The correct macro is
#define ADD(X,y,z) ({(x)+(y)+(2))
4, tdefine SQUARE (x) ((x)*(x))

#define STREQL(sl,s2) (strcmp((sl), (82)==0)
1f(STREQL (strl, str2)

iii. Nested Macros

A macro name can be contained within another macro. This is called nesting of macros.

Example: #define CUBE(x) (SQUARE (x)* (x))
tdefine MAX(a,b,c) LARGER(LARGER(a,b),c)

Macros versus Functions

. Macros are small and do not usually extend beyond one line. They are used when the code is
relatively short.
il. Since the macro is replaced by its code, if a macro occurs many times, the final program }

contains the expanded code of all the macros; thereby increasing program size.
In contrast, a function code appears only once. A function has space advantage over a macro.

iii. When a function is called, a certain amount of processing is required to pass control to the
function code and return control back to the calling program. This takes a finite amount of time.

This does not occur for a macro because the macrocode is put into the program. Therefore, a macro
has a speed advantage over a function.

10.2.2 File Inclusion Directive

The file inclusion directive is the one that begins with #include. We have already used this
directive a number of times. ‘

This directive instructs the compiler to include the specified file, i.e., it replaces the entire contents
of the file at that position.

o C Programming . C Preprocessor
vISion i

Syntax: #include<filename>
OR
#include”filename”

. In the first format, the file is searched in standard directories only.

J In the record, the file is first searched in the current directory. If it is not found there, the search
continues in the standard directories.

. Any external file-containing user defined functions, macro definitions etc. can be included.

. An included file can include other files.

Example

/*group.h */
#include<stdio.h>
#include<math.h>
#include “myfile.c”
#define PI 3.142

/*mainprog.c */

#include “group.h”

main ()

{

}

10.2.3 Compiler Control Directives / Conditional Compilation

Several directives allow compilation of selective portions of the program’s code if certain
conditions are met. These are:

i. #if

i, #else
iti. #elif
iv. #endif

They work similar to the if else statement in C. The different formats in which they can be used are
as follows:

i #if expression
statement_block;
#endif

ii. #if expression
statement_blockl;
#else
statement_block2;
#endif

C Programming L4 C Preprocessor (o

#if expression
statement_blockl;

#elif expression
statement_block2;

#elif expression
statement__block3;

#else
default statement_block;

#endif

If the constant expression is true, the statement block is compiled otherwise it is skipped and goes
to the #else part (if it exists).

Examples
1. #define MAX 10
main ()

{ #if MAX>99

/* Code for larger array */
#else

/*Code for smaller array */
#endif
}

2. #if BACKGROUND==5
#define FOREGROUND 1
#elif BACKGROUND==
#define FOREGROUND 0
#endif

Another method for conditional compilation is the use of #ifdef, #ifndef.
#ifdef means if defined and #ifndef means if not defined.

In case of a large C program, many macros are defined in various files so it is difficuit to remember
if a particular macro has been defined or not.

In such a case we can check for its definition using the above two macros.
L Redefining an existing macro is erroneous.
. Un-defining a non existent macro is also erroneous.

So the definition of a macro has to be first checked for.

The syntax is

#ifdef macro_id
statement_block;
#endif

#ifndef macro_id
statement_block;
#endif

(/o C Programming . C Preprocessor

vision

Example: #include “declare.h”
#ifndef FLAG
$define FLAG 1
#endif

Un-defining a Macro

A macro can be undefined using the # undef directive.
Example: #ifdef FLAG

#undef FLAG

#define FLAG O

#endif

#ifdef and #endif can be used to compile and run debugging code in the program.

Example: #define DEBUG 1
main ()

{ -

$ifdef DEBUG
/* debugging code put here */
$endif

-}

Another important use of conditional compilation directive is when a program has to be run on

different machines. In such a case, the common part of program can be run and the machine dependent

program part can be conditionally compiled as shown below.
main() .
{ #ifdef IBM-Pc
{ code for IBM-Pc }
felse
{ code for HP machine}

#endif }

C Programming LA C Preprocessor (o
VISION

- SOLVED PROGRAMS

1.

What will be the output of the following programs? Give the explanation.

i. #define MAN(x,y) (x)>(y)? (x):(y)
Void main()
{

int i =10, j =9, k = 0;
K = MAN(i++, ++3);
printf(“sdedsd”, 1, j, k);
getch();

Ans
This program displays the following output:
11111

In this program first we define the macro MAN. This macro takes two arguments. According to
the value of argument they update the value of argument.

e.g., we initialized the value of i = 10 and j = 9 and we are checking the values of x and y. If x is
greater than y it returns the updated value of x otherwise it return updated value of y.

ii. # define So(x) x * x
define CB(x) SQ(x) * x
main() {
int a, b, ¢;
a=4g;

b = 80(+ + a);
c = CB(b + +); ;
printf("a = 8d b = 8d ¢ = %d”, a, b, ¢);

Ans
a=4

b = ++a* ++a // macro SQ is executed for b. Value of a will become 5 then 6. Final value 6 will
be considered.

b=6*6=136

b=36

¢ = b++*SQ(b++)// macro within macro concept is used. MacroSQ is called within macro CB.
¢ = b++*b++*b++ (b=37 then b=38 then b=39 so final value b=39 will be considered)

c =39%*39*39 = 59319

printf will print 6 39 59319

Output = 6 39 59319

C Programming L C Preprocessor

111, #define lee(a,b,c) avg (a,b,c) <=60
#define des(a,b,c,d) (d= =1 ? geq(a,b,c) : lee(a,b,c))
void main(void)

{

int num = 70;
char ch = '0';
float £ 2.0;
if des(num, ch, £, 0) puts("lee");
else puts ("geq");

Ans
avg is a function which is not defined here.

So the correct code is

int avg(int a,int b,int c¢)

{

return(a+b+c)/3;

}

#define lee(a,b,c) avg(a,b,c)<=60

#define des(a,b,c,d) (d==1 ? geqg(a,b,c):lee(a,b,c))
void main(void)

{

int num = 70;

char ch '0';
flocat £ = 2.0;

if (des{num,ch,f,0))
puts("lee");

else

puts ("geqn) ;

}

//des,geq, lee are macros.

I

des is called with parameters
num=70,ch='0’ (ch=48 ASCII value of zero is taken),f=2.0 and 0(zero)

S0
a=70,b=48,¢=2.0,d=0.

d!=1 so lee will be executed with parameters(a,b,c)
lee will call average function

a+b+c/3

=70+48+2.0/3

=120/3=40

Lee will give answer 40 < 60. So des will print string lee
Output: lee

C Programming k . C Preprocessor (e

EXERCISES

A. Predict the output

1. #define GREAT “xyz”
main ()
{ printf (GREAT);
}

C 2, #define GREET HELLO

main ()
{ printf (GREET);
}

3. main ()
{ #include <stdio.h>
}

4, #tdefine MAIN main()

#define BEGIN {
#define END }
#define GREET printf (“Hello”)
MAIN
BEGIN
GREET;
END

5. #define SQUARE (x) (x*x)
main()
{ int i = 20, 3=10,k;
k = SQUARE (i-3j)
printf (“%d”,k);
}

o. #define SQUARE (x) (x)*(x)
main{()
{ int i1 = 20, 3=10,%;
k = SQUARE (i-j);
printf (“%d”,k);
}

7. #define FLAG
#ifdef FLAG
int 1 = 10;
$endif
main ()
{ int i = 5;
printf (“%d”,1);

Ulglflgll C Programming L4 C Preprocessor

8. /*File abc.h */
printf (“Hello”);
/*File my.c */
main ()
{ #include “abc.h”
printf (“C”);
9. /*File xxx.h */
printf (“Hello”)
/*File my.c */
main ()
{ #include “xxx.h”

’

printf (“C”);

B. Review questions

1. Write a note on the C Preprocessor.
. Explain Macro substitution in brief with examples.

. When an argumented macro is defined, why should each argument be enclosed in parenthesis?

2

3

4. Do header files need to have a .h extension?

5. Illustrate the use of #ifdef and #undef with examples.
6

. Explain any four preprocessor directives.

G

i

%

C Preprocessor

C Programming

File Handling

1.1 INTRODUCTION

All the input, ouiput functions that we have seen so far are console oriented I/O functions.
However, most applications icquire a large amount of data. If this data has to be entered through the
standard input device, it is time consurning and moreover, once the execution is over, the data is lost.
We may also require a program's output for later use.

Therefore, data can be stored on the disk and read whenever required. Similarly, the output of a
program may also be stored in files.

There are many file I/O functions provided in the C library. But before we go into the details of file
handling, it is important to know something about ‘Streams in C’.

11.2 STREAMS

° All C input/output is done with streams, no matter where the input is coming from and no
matter where it is going to.

. A stream is a sequence of bytes of data. A sequence of bytes flowing into a program is an input
stream, and the one flowing out is an output stream.

. The use of streams makes I/O device independent.

1M1e1

C Programming J File Handling (o
' _Vision

Predefined Streams

There are 5 predefined streams, which are automatically opened when a C program starts executing
and are closed when the program terminates.

stdin Standard input Standard input device (opened for input) Keyword

stdout Standard output Standard output device (opened for output) Screen
stderr Standard error Standard error output device (opened for output) Screen
stdprn* | Standard printer Standard printer (opened Printer for output) (F;-r;jn_;?;

N . Standard auxiliary device (opened for input and Serial Port
stdaux™ | Standard auxiliary output) (COM)

* supported only under DOS
Example: The output of a function like printf () orputs () goes to the stream stdout . The
scanf () receives its input from stream stdin.

A stream is associated with a file. For every disk file, that the program uses, a stream associated
with that file has to be created.

11.3 TYPES OF FILES

Streams are of two types - text and binary. Either typé of stream can be associated with a file.
Hence, we can have two types of files: Text and Binary.

Difference between Text and Binary Modes

1. Text files consist of a sequence of characters organized into lines and terminated by one or more
characters that signal end-of-line. The maximum line length is 255 characters.
In binary files, all data is written and read with no interpretation and separation. All bytes of
data are considered the same. '
ii. A character translation may take place in text files. Thus, the number of characters read or
written may not be the same as those stored on the external device. For example, the C new-line
character is converted into a Carriage Return-Line Feed combination and stored in the file.
When data is read from the file, the CR-LF combination is translated to a \n',
In binary files, there is a one-to-one correspondence between the bytes read and the bytes
stored, i.e., no character translation will occur.

Hi. In text, files, ASCII Ox1A is considered as end-of file character. No special character indicators
are there in binary files. The end-of-file is detected from the number of bytes in the directory
entry of the file.

iv. In atext file, characters are stored one byte per character. Even numeric data is stored this way,
Le., one byte per digit of the number. » .

In binary files, a character occupies 1 byte, integer 2 bytes and float 4 bytes. Thus they occupy
same amount of disk space as memory space.

ué?tfn C Programming . File Handling

11.4 OPERATIONS ON A FILE

C provides various functions to handle files. These functions are to

. Open a file

ii. Read data from a file
1i. Write data 1o a file
iv. Close a file

v. Detect end-of-file

Before we learn more about these functions, it is essential to know about the File Pointer.

The File Pointer

A file pointer is a pointer variable of type FILE, which is defined in stdio.h. The type FILE defines
various properties about the file including its name, status and current position.

Basically a file pointer identifies a specific disk file. This pointer is used by the stream associated
with it to tell the I/O functions where to perform the operations.

11.4.1 Defining and Opening a File

If we want to store data in a file in the secondary memory, we must specify certain things about the
file to the operating system. They include:

1. Filename
ii. Data structure
ili. Purpose

Filename is a string of characters that makes up a valid filename for the operating system. It may
contain two parts, a primary name and an optional period with the extension. For example: Employee,
C, input, data, PROG.C etc.

Data structure of a file is defined as FILE in the library of standard I/O function definitions.
Therefore, all files should be declared as type FILE before they are used. FILE is a defined data type.
The process of opening of a stream for use and linking a disk file to it is called opening a file.

When we open a file, we must specify what we want to do with file. For example: we may write
data to the file or read the already existing data.

Following is the general format for declaring and opening a file:

a. FILE *fp;
fp = fopen ("filename", "mode"); OR
b. FILE *fopen(const char *filename, const char *mode); '

The first statement declares the variable fp as a "pointer to the data type FILE". As stated earlier,
FILE is a structure that is defined in the J/O library. The second statement opens the file named
filename and assigns an identifier to the FILE type pointer fp. This pointer which contains all the
information about the file is subsequently used as communication link between the system and the
program.

C Programming . File Handling (o

The second statement also specifies the purpose of opening this file. The mode does this job. Mode
can be one of the following:

Opens a file for reading. If file does not exist fopen() retufns NULL.

. Creates a file for writing. If specified file does not exist, a new one is created. If it exists, existing
contents will be overwritten.

“a” Opens a file for appending. If specified file does not exist it is created.

- Opens the file for reading and writing. 1f specified file does not exist, it is not created. If it exists, new
data is not added to the beginning of the file.

., | Creates a file for reading and writing. If the specified file does not exist, itis created. If it exists, it is
overwritten.

“gy Opens a file for reading and appending. If the specified file does not exist, it is created. If it exists, new
data is appended to the end of the file.

Note: The default mode is text. The character t can also be used along with the specified characters to
indicate a text file, i.e., "rt", "w + 1"

To open a file in binary mode, ‘b’ has to be appended to the specified modes.
i.e" "rbﬂ Hwb!l

Example

FILE *fptr; /*declares fptr as a pointer to type FILE */
fptr = fopen("in.txt“,"r");

The file pointer £ptr is to be used in all subsequent read/write operations on the file in.txt.

11.4.2 Closing a File

After the operations on the file have been performed and it is no longer needed, the file has to be
closed using the £close () function.

L It ensures that all information associated with the file is flushed out of buffers.
. Prevents accidental misuse of the file.
. It is necessary to close a file before it can be reopened in a different mode.

Prototype: int fclose(FILE *fp);

Example: fclose(fptr);

We can also close all open streams (éxcept the predefined ones) by using the fcloseall() function.
Prototype: int fcloseall (void);

11.4.3 End-of-file

If we know exactly how long a file is, there is no need to detect the end of file. However, in many
cases, we do not know how big the file is. So its necessary to detect end of file. This can be done in
two ways:

i. In text files, a special character EOF (defined in stdio.h, value-1) denotes the end of file. As
soon as this character is read, the end-of-file can be detected.

C Programming o File Handling

ii. In binary files, the EOF is not there. Instead we can use the library function feof() which
returns TRUE if end of file is reached. It can be used for text files as well.

Prototype: int feof (FILE *fp);
Example

1. if (feof (fptr)== 1)
printf("File has ended");

2. while (! feof (fptr))
{

}

3. Write a program that reads the information of the employee
(name, age, city, salary) and store into employee.dat file. Also
find the highest salary paid employee (Use structure/union).

C Programming . File Handling

11.4.4 Reading and Writing File Data

File I/O operations can be performed in three ways:

1. Character/string input/output to read/write characters or line of characters. Although its
possible to do this with binary files, these operations are commonly used with text files only.
Functions: fgetc, fputc, fgets, fputs, getw, putw

i, Formatted I/O to read/write formatted data. This can only be used with text mode files.
Functions: fprintf, fscanf

ili. Direct input/output to read or write blocks of data directly. This method is used only for binary
files. Functions: fread, fwrite

i. Reading and Writing Characters

a. getc() and fgetc(): Both are identical (getc is a macro, fgetc is a function) and are used
to input (read) a single character from the specified stream.

Prototype: int getc(FILE *fp);

They return a single character. When used with the stream stdin, they input a character
from the keyboard.

Example: ch = getc(fptr);
ch = getc(stdin);

b. putc() and fputc(): Both are used to write a single character to the specified stream. If
the stream is stdout, they display it in the standard output device,

Prototype: int putc(int ch, FILE *fp);

C Programming . File Handling

Example: char ch = 'A';
putc (ch, fptr);
fputc(ch, stdin) ;

C. fgets(): It reads a line of characters from a file.
Prototype: char *fgets(char *str,int n, FILE *fp);
. str points to the string where the read string has to be stored.

] n is the maximum number of characters to be read. Characters are read until a new
line is encountered or (n-1) characters have been read whichever occurs first.

Example: char name[80];
fgets(name, 80, fptr);

d. fputs(): Writes a line of characters to a stream. It does not add a new-line to the end
of the string. If it is required, then the new line has to be explicitly put.

Prototype: char fputs(char *str, FILE *fp);

Example: char city[] = "Pune";
fputs(city , fptr);

e. getw: It reads an integer from a file.
Prototype: int getw(FILE *fp);

Example: int n;
n = getw(fptr);

f. putw: Writes an integer to a stream.
Prototype: putw(int n , FILE *fp);

Example: int num = 10;
putw (num, fptr) ;
We shall now see an example using the above functions. The task is to accept characters from
the keyboard till user enters EOF and store them in a file. These characters are then read from
the file and displayed on the screen. The number of characters is also displayed.

Note: The above two functions are not defined in the ANSI C standard and hence may not be
portable.

/* Reads characters from keyboard, stores them in a file and displays from the file */

C Programming . File Handling (o

Write a C program to read a text file and copy all contents
of that file into another file. When you copy the contents
the source file content the words "and", "i.e.", and "e.g."
are replaced with "&", "that is" and "for example"

File Handling

C Programming

C Programming e File Handling ‘7

3. Write a program to display frequency of each character in
a given file.

(/o C Programming . File Handling
vision

Formatted File Input / Output Functions

The functions seen above can handle only single data types. In order to deal with multiple data
types, formatted file /O functions are used. fprintf () is used for output and fscanf()is
used for input.

a. fprintf: This is similar to printf except that a pointer to a file must be specified. Data
is written to the file associated with the pointer.
Prounype: int fprintf(FILE *fp, char *format, argumentlist);
The format string is the same as used for printf.
The argument lists are the names of variables to be output to the specified stream.

Example: char name[] = "ABCD",
int age = 20;
float amount = 1005.75;
fprintf (fptr, "%s%d%f", name, age, amount);
b. fscanf: This is similar to scanf except that input comes from a specified stream instead
of stdin.
int fscanf(FILE *fp, char *format, addresslist);
The format string is the same as used for scanf. The address list contains the addresses of
the variables where fscanf() is to assign the values.

Example: fscanf (fptr, "$s%d%f", name, &age, &amount}) ;

Program: /* Illustrates fprintf and fscanf */

C Programming 4 File Handling (e

Direct File input /Output

This is used only with binary-mode files. It is used to read or write blocks of data.

L

fwrite: This function writes a block of data from memory to a binary mode file.

Prototype: int fwrite(void *buf, int size, int count, FILE *fp);

o buf is a pointer to the region of memory which holds the data to be written to the
file.

° size specifies the size in bytes of individual data items.

. count specifies the number of items to be written.

Example

To write a single float variable x to a file, the statement will be.
fwrite (&x,sizeof (float), 1, fptr);

To write a 100 element integer array n to the file,
fwrite(n,sizeof (int), 100, fptr);

fread: It reads a block of data from binary-mode file and assigns it to the region of
memory specified. It returns the number of values read.

Prototype: int fread(void *buf, int size, int count, FILE *fp);

° buf is the pointer to memory that would receive data read from the file (i.e., it is the
address of the variable).
e size specifies the size, in bytes of individual data items being read.
° count specifies the number of items to be read.
Examples
1. fread (&num, sizeof (int), 1, fp);

This reads an integer from the file and assigns it to num. If we have a structure variable
emp and its members have to be read from the file, fread can be used.

fread(&emp, sizeof (emp), 1, fp);

m%@“ C Programming L4 File Handling

2. /* Ilustrates fread and fwrite to store and read employee information from a
file */

11.4.5 Other Functions ‘
i fflush: This causes the buffer associated with an open output stream to be written to the

specified file.

If it is an input stream, its buffer contents are cleared.

Syntax: fflush(FILE *£fp);
Example: £flush(stdin);

C Programming * File Handling (lo
—VISIoN

ii. remove: This deletes the file specified. If it is open, be sure to close it before removing it.

Syntax: int remove(const char *filename);
Example: remove("my.txt");
ili. rename: This function changes the name of an existing disk file.
Synum: int rename(const char *oldname, const char *newname) ;
Both files must be in the same disk drive.

Ehanqﬂe:’ rename("c:\my.txt","c:\mynew.txt");

1.5 ERROR HANDLING DURING I/O OPERATIONS

It is possible that an error may occur dufing /O operations on a file. Typical error situations
include:
I. Trying to read beyond the end-of-file mark.
il. Device overflow.
iii. Trying to use a file that has not been opened.
iv. Trying to perform an operation on a file, when the file is opened for another type of operation.
V. Opening a file with an invalid filename.
vi. Attempting to write a write-protected file.

If we fail to check such read and write CIrors, a program may behave abnormally when an error
occurs. An unchecked error may result in a premature termination of a program or incorrect output. So
to handle this situation, we have two status - inquiry library functions. feof (as already seen) and ferror
that can help us detect /O errors in the files.

The feof function can be used to test for an end of file condition. It takes a FILE pointer as its only
argument and returns a non-zero integer value if all the data from the specified file has been read, &
returns zero otherwise. If fp is a pointer to a file that has just been opened for reading, then the
statement,
if(feof (fp))

printf ("End of data.\n");

would display the message "End of data" on reaching the end of file condition. The ferror function
reports the status of the file indicated. It also takes a FILE pointer as its argument and returns a
non-zero integer if an error has been detected up to that point, during processing. Otherwise, it returns
zero. The statement

if(ferror(fp)! = 0)

pPrintf("An error has occurred \n");

would print the error message, if the reading is not successful.

(o C Programming o File Handling
vision ‘

We know that whenever a file is opened using fopen function, a file pointer is returned. If the file
cannot be opened for some reason, then the function returns a NULL pointer. This facility can be used
to test whether a file has been opened or not. For example:

if (fp == NULL)
printt("\n File could not be opened");

The following program illustrates the use of the NULL pointer test and feof function. When we
input filename as Result, the function call

fopen("Result”, "r");

returns a NULL pointer because the file Result does not exist and therefore the message “Cannot
open the file” is printed out.

Similarly the call feof (fp2) returns non zero integer when the entire data has been read, and
hence the program prints the message "Ran out of data" and terminates further reading.

Program: Illustrates error handling in file operations.

C Programming . File Handling (o

11.6 RANDOM ACCESS TO FILES

Every open file has a position pointer or a position indicator associated with it. This indicates the
position where read and write operation takes place.

In all earlier programs, we read the file sequentially. However, C provides functions to control the
position pointer by means of which data can be read from or written to any position in the file. These
functions are:

i. ftell: This function is used to determine the current location of the position pointer.
Protetype: long ftell(FILE *fp);

It returns a long integer that gives the current pointer position in bytes from the start of the file.
(i.e., it gives the offset in bytes the beginning of the file). The beginning of the file is considered
at position 0.

Example: fp = fopen("in.txt"), "r");
printf ("$1d", ftell (fp));

Here the output will be 0, because when a file is opened, the position pointer points to the
beginning of the file.

ii. rewind: This function sets the position pointer to the beginning of the file.
Prototype: void rewind(FILE *fp);

This function can be used if we have read some data from a file and want to start reading from
the beginning of the file, without closing and reopening the file.

Example: rewind(fp);
printf ("%$1ld", ftell (fp));
This will yield O since rewind positions the pointer to the start of the file.

iii. fseek: More precise control over the position pointer is possible using fseek. The function fseek
allows the pointer to be set to any position in the file.

Protetype: fseek (FILE *fp, long offset, int origin);
. offset indicates the distance in bytes that the position pointer has to be moved by

. origin indicates the reference point in the file with respect to which the pointer is moved
offset number of bytes.

There can be three values for origin with symbolic constants defined in stdio.h

SEEK_SET Moves the position pointer offset bytes from beginning of file.
SEEK_CUR 1 Moves the position pointer offset bytes from its current position.
SEEK_END 2 Moves the position pointer offset bytes from the end of the file.

Example
1. fseek (fptr, 0, SEEK_END) ;

This positions the pointer to the end of the file.

C Programming L File Handling

struct emprec
{ -

} rec ;

If file contains four records of struct emprec as shown:

fp—o [rect | rec2 l rec3 | recd I

fseek (fp, 2*sizecf (struct emprec), SEEK_SET);

This positions the pointer to the beginning of rec3.
fread(&rec, sizeof (struct emprec), ip);

will read the third record.
fseek (fp,-sizeof (struct emprec), SEEK_END);

will position the pointer to the beginning of the 4™ record.
fseek (fp,-2*sizeof (struct emprec), SEEK_CUR);

will now position it to the start of the second record.

ftell can be used with fseek to find the size of the file.

fseek (fp, 0, SEEK_END) ;
printf ("%1d", ftell(fp));

This will display the size of the file in bytes. ‘

Note: 0, 1 and 2 can be uscd in place of SEEK_SET,SEEK_CUR and SEEK_END respectively.
However, the use ot s;mbolic constants makes the program more readable.

SOLVED PROBLEMS

1. Accept a filename from the user and write a C program to
replace all vowels in a given file with '*'.

C Programming File Handling

foloseall ()
} -

2. Write a program to count no. of sentences in given file.

Ans

C Programming File Handling

What will be the outputs? Give explanation.

char myData = 7;

FILE *fp;

fp = fopen('"r” . "My File");

fscanf ("Here’s a number $%d" & myData);
printf("¢d", myData);

In the fp = fopen ("1, "My_File"); statement displays two errors:

i.
ii.

Cannot convert Char * to FILE*.
Type mismatch in parameters.

Because the syntax of fopen() fuﬁction is wrong. It takes the file name first and the mode of file,
but in program file, mode is mentioned and then file name.

A. Programming exercises

1. A file named DATA contains integers. Read this file and copy all even numbers into a file
named EVEN and all odd numbers in the file named ODD.

2. Accept three file names as command line arguments. First two contain roll numbers and names.
The roll numbers are in ascending orders. Merge these two into the third file such that the third
file still remains sorted on Roll number.

3. Read a file source.txt which has data in uppercase. Convert it to lowercase and store it into
target.txt.

4. Read a file and encrypt the file using command line arguments.

For example, c:\> ENCRYPT filename ‘

5. Write a menu driven program to manipulate employee data in a file-Employee.dat. The details
to be stored are: Employee id, Employee name, Employee designation, age, basic salary. The
menu should consist of the following options.

L. Add arecord ii. Delete arecord ili. View all record
iv. Modify a record v, Exit

6. Write a program to accept two filenames as command line arguments and copy the contents of
source file to target file.

7. Write a program to read a file and count the number of lines, tabs and characters in the file.

C Programming . File Handling

Review questions

B.
1.
2.
3.
4

What are streams? List the five streams that are automatically opened when a program runs?

Differentiate between text and binary files.

Tllustrate how a character can be written to and read from a file?

Explain the following functions with examples

1. fprintf ii. fscanf iii. fread iv.
What is the use of the fseek function?

What are the different modes in which a file can be opened?

Explain ftell and rewind functions.

(o
vIsio

fwrite

Bitwise Operators

12.1 INTRODUCTION

The C languagé offers some bit-wise operators for manipulation of bits. In this chapter, we shall
study them in greater detail and see some of the important applications of these operators.

The six bit-wise operators are:

, ~ | One’s complement
>> | Right shift
<< | Left Shift
& | Bitwise AND
| | Bitwise OR
A | Bitwise XOR

These operators operate on integer and character but not on float and double. Let us revise these

| operators again in brief.

Bitwise Operator
The bitwise AND, OR and XOR work according to the following rules:

—l=lolo
—lo|xlo
wjlololo
alalalo
o|l=|=|o

\ 1201 12
wision

C Programming L4 Bitwise Operators

Examples
1. Assume that a and b are integers with values 13 and 7 respectively. Assuming that an integer
occupies 2 bytes,
a in binary = 0000 0000 0000 1101
b in binary = 0000 0000 0000 0111
a&b = 0000 0000 0000 0101
alb = 0000 0000 0000 1111
a’b = 0000 0000 0000 1010

2. Using the bitwise operator add two positive integer numbers
(without using + operator).

Shift Operators

The bit pattern of the data can be shifted by a specified number of positions to the left or right
using the left shift (<<) and right shift (>>) operators respectively.

When the data is shifted left, the trailing empty spaces are filled With ZEeros.

Similarly, the leading empty spaces are zero filled when data bits are shifted right.

C Programming ° Bitwise Operators

Example: a 0000 0000 0000 1101

a<<3 = 0000 0000 0000 1000
k.-v-J

zero filled spaces
a>>3 = 0000 0000 (0000 0001

(The rightmost three bits drop off)

The general syntax is:

operandl shift_operator operand?2;

Note: Shifting by one position to left is effectively multiplying the operand by two.
Shifting right by one position divides the operand by two.

One’s Complement Operator

The ~ operator yields the one’s complement of an integer, that is, it inverts each bit of the operand
(1 to 0 and vice versa).
Example: If a = 0000 0000 0000 1101
~a = 1111 1111 1111 0010

- Precedence: ~ is along with other unary operators like ++ , - - and ! in hierarchy with R — L
associativity.

12.2 APPLICATIONS

12.2.1 - Masking

Masking is a process by which only the required part of the data is \
retained and the rest is masked. The masking can be done by using bit-wise operators to extract some
portions of the data.

The most common mask used is the AND mask by using the & operator.

Example

1. An integer is stored as 16 bits. If we require only the last eight
bits of the data, the data can be ANDed with the following
‘mask’:

0000 0000 111tiItl

Thus, the first 8 bits of the result will be 0 (since the data bits are ANDed with 0) and the last
eight bits will be the data bits. :

1000 0010 1001 1110
mask 0000 0000 1111 t1fl
0000 0000 1001 1110

C Programming ° Bitwise Operators (7

Thus, the portion to be retained has to be ANDed with 1 and the portion to be masked off has to
be ANDed with 0.

2. Displaying the binary equivalent of an integer, i.., display the integer bit-wise.

In order to do this, we have to start from the most significant bit (MSB) which is the leftmost bit
(Position 15) and check if it is O or 1 and display it. Next we have to consider the second MSB
and so on till it reach the 0™ bit (leaset significant bit).

In order to do so we will have to use a mask such that its bit at the position under consideration
is 1 and the rest are 0. For example, when we are considering the MSB of the data, the MSB of
the mask should be set to 1 and rest 0. For the 2™ MSB, the 1 has to be shifted one position to
the right.

Thus, each bit of the data can be considered by successively shifting the mask one position to
the right till it becomes 0.

To find out if the data bit is 1 or 0, ANDing the mask with the data will give 0 if the data bit is 0
and non-zero if the data bit is 1.

3. /* Displays an integer bit wise */

Output
Enter the two numbers : 65535 32768
65535 in binary is : 111t311111111111
32768 in binary is : 1000000000000000

C Programming L4 Bitwise Operators

4. Masking can also be used for manipulation of hexadecimal numbers. 4 bits make up a
‘nibble’ and each nibble is represented in hex by 0-9 or A-F. Individual nibbles can be
extracted and manipulated by using the masking method.

To extract the second nibble from the left of the hexadecimal number 0xA3B1, the mask used
will be 0xOF00
i.e., 0OXA3B1 1010 0011 1011 000!
A 3 B 1
mask O0x0F00 0000 1111 0000 0000
0 F 0 0
& ~ 0000 0011 0000 0000
0 3 0 0

5. /* Illustrates masking with hexadecimal integers. This program interchanges the first and
second nibble (from LSB) and masks the rest *f

Output

Enter the hexadecimal number: 3A2F
| The result is F2.

C Programming L4 Bitwise Operators (o

12.2.2 Internal Representation of Date

A date is internally stored in memory as an unsigned integer (16 bits) in the following format.

1514 13 12 11 10 9 8 7 6 5 4 3 2
YIYL| Y|y ylylyimimimimigldid|d
€ year >€¢— month >€ day >

DOS converts the actual date to this 2-byte form using the conversion.
512 * year + 32 * month + day
For example, if the date is 11-01-81, the converted date will be
512 *81 +32* 1+ 11=41515, which will be stored as
[tJofJrToJoJo 1 JoJoJo]1 N EEENERE
Year month ~ day

In order to extract information about the year, month and day, left and right shift operators have to
be used.

To obtain

I day : shift data left by 11 bits followed by right shift by 11 bits.
ii. month: shift left by 7 and then shift right by 12
iii. year : shiftrightby9.

Program: /* Illustrates conversion of date to bit format */

Day = 31
0000000000011111
Month = 12
0000000000001100
Year = 89
0000000001011001

(/o C Programming . Bitwise Operators
uISIoN
Output
(Enter the date, month and year -dd mm yy : 31 12 89
!

12.3 BIT FIELDS
When storage space is limited, it may be necessary to pack several objects into a single memory
word.

Some applications require data with very small values. Here too, we can pack information into the
bits of a byte or a word if we do not need to use the entire word to represent data. -

Example: We use flags to represent Boolean TRUE or FALSE, ie., 1 or 0. These can be
represented in a single bit. However declaring them as a char or int will use 8 bits and 16 bits
respectively.

A method to define a structure of packed information is known as a bit field. The syntax of
definition and access is based on structures.

Example: In order to store the values of flags, f1, f2, and f3, an integer whose range is from 1 to 12
and an integer_count whose value ranges from 0 to 500, the assignments could be

f1 f2 13 n count

<—1 bit —»€— 4 bits —»&¢———— 9bits >
each

The bit field declaration will be

struct data

{ unsigned int £f1 : 1;
unsigned int £2 : 1;
unsigned int £3 : 1;

a unsigned int n : 4;
unsigned int count : 9;

bodl;

The individual members can be accessed as d1.f1, d1.f2, etc.

C Programming

Bitwise Operators

Initialization

The variable d1 can be initialized as

struct data

} d1 = {0,1,1,10,250};
This assigns
dl.fl =0
di.f2
di.f3
dl.fn=10
dl.count ='250

il]
—_—

SOLVED PROGRAM

mﬁ@“ " C Programming ° Bitwise Operators

EXERCISES

A. Predict the output

1. main ()
{ union bbb}

{ struct
int a:1;
int b:l;
int ¢ : 1;
int d : 1;
int e : 1;
int £ : 1;
int g : 1;
int h : 1;

} aaa;

char x;

union bbb pgr;

pgr.aaa.a = pdgr.aaa.b pdar.aaa.c pgr.aaa.d = 1;
pdr.aaa.e = pgr.aaa.f = pgr.aaa.g = pgr.aaa.h =
printf (¥“%d”,pgr.x); }

. Programming exercises

|
=
~

Write a function rightrot (x,m) which rotates integer x right by m position and returns the result.
Write a function leftrot (x,m) which rotates bits of integer x to the left by m position.

Write a program to accept a hexadecimal number and reverse the nibbles of the number, i.e.,
3A25 should be reversed to 52A3.

4, Accept a hexadecimal number and a nibble number (1,2,3 or 4). Convert the number such that
only the specified nibble is inverted and all others remain the same.

el

5. Write a function setbits (x,m,y) that returns x with its leftmost m bits set to the right most m bits
of y.

6. Write a program to find the number of bits required for storing a character, integer and long
integer without using the sizeof() operator.

7. Write a program to convert an integer into its equivalent binary number using bitwise operators.
Hint: use masking. '

Review questions

What is masking? Explain giving an example.
What are bit fields?

How is date internally stored? Show the format.

RN =e

Explain the bitwise operators giving examples.

. itwise Operators

C Programming

Graphics In C

13.1 INTRODUCTION

So far we have limited ourselves to text input and output. However in order to make the output
Took' better or to design an application which uses images, shapes, etc. we have to use graphics. All
computer games, animation, multimedia applications extensively use graphics.

In this chapter, we shall be studying some basic graphics concepts and see the use of simple
graphics functions in the C languages.

13.2 BASIC CONCEPTS

i. Graphics.h, Graphics.lib: Graphics.h is a header file that contains the definitions of constants
and prototypes of graphics functions.

Graphics.lib is a library file, which contains function definitions.

ii. Graphics mode: In order to use graphics in the program, a user has to switch from the default
'text’ mode to the graphics mode. There are various modes depending upon the monitor used and
the display adapter.

Automatic selection of a mode can be done by the standard function initgraph().

iii. Resolution: The display screen (for graphics) is divided into number 'dots’ called pixels. The
more the pixels the clearer is the image.

The total numbers of pixels on the screen in the graphics is called the resolution.

131 , (/e
vision

C Programming L4 Graphics in C (o
VISION

Example: The Video Graphics Array (VGA) adapter provides a maximum resolution 640x480
pixels in 16 colours.

(0,0
Screen

y 640 480
{maxx, maxy)

iv. initgraph(): This standard library function selects the graphics mode offering the best
resolution and stores the corresponding mode number in the variable gm.

v. Graphics drivers: Device drivers are programs, which communicate with specific devices. A
program communicates with these drivers, which in turn communicate with various devices.

Graphics drivers are device drivers applicable only in the graphics mode. Turbo C offers many
graphics derivers (with extension BGI). One of them has to be selected depending upon the
adapter used.

vi. DETECT macro: DETECT is a predefined macro which does the task of selecting the
appropriate graphics driver. This value has to be stored into a variable for further use (gd).

vii. Exiting the graphics mode: The graphics mode can be exited by using the closegraph()
function. This function deallocates the memory allocated to various graphics objects and exits
the graphics mode.

viii. Restoring the text mode: The function restorecrtmode() can be used to restore the screen
mode to the seitings prior to the graphics settings.

Simple Graphics Program

To enter the graphics mode, display the text "Welcome to Graphics" in the center of the screen and
then exit the graphics mode.

2z Z s 2

1. getmaxx() and getmaxy() are functions which return the maximum x and y coordinates
respectively in the current screen mode.

ii. outtextxy is a function which displays text at the specified x and y coordinates on screen.

C Programming . Graphics in C

1 13.3 DRAWING SIMPLE GRAPHICS OBJECTS

13.3.1 Drawing a Line

Method I: Using the line() function

Syntax: void line(int x1, int yl, int x2, int v2)

It draws a line in the current colour using the current line style and thickness, between the two
points (x1, y1) and (x2, y2) without updating the current position (CP).

getmaxx();
getmaxy();
1line(0,0,x,¥y)

Example: x
y

Method 2: Using moveto() and lineto()

The cp can be changed to a specific position using moveto() and the lineto() function can be used
to draw a line from the cp to a specified position.

After lineto() the cp changes to the end point of the line.

Example

moveto (200, 50); /* change C.P. to (200, 50) */
lineto (200, 150); /* draws a line from (200, 50) to (200, 150) */

(200, 50)
(200, 150)

Method 3: Using linerel()

This function draws a line relative to the c.p. The cp can be changed using either moveto() or
moverel() functions. The c.p. is advanced by the specified offsets

Syntax: void linerel (int dx, int dy);

Example: moveto (200, 50);
linerel(0,100);

C Programming 4 Graphics in C

13.3.2 Setting Line Style

Lines of different styles can be drawn by using the setlinestyle() function followed by any line
drawing function.

Syntax: setlinestyle (int linestyle, unsigned upattern, int thickness)

The linestyles enumerated in graphics.h are:

0 Solid Line

1 Dotted Line

2 Center Line (Alternate dots and dashes)
3 Dashed Line

4 User-defined line

The second parameter is applicable only if the first is user-defined.
The thickness parameter can take values from 1 to 3.

Example: setlinestyle(3,15,1);
line(0,0,200,150);

13.3.3 Drawing a Rectangle

The rectangle() function draws a rectangle in the current line style, thickness and colour. It does
not fill the rectangle.

Syntax: void rectangle(int left, int top, int right, int bottom)

Example: rectangle(100,50,200,100);

(100,50)

(200,100)

13.3.4 Drawing a Circle
The circle() function is used to draw a circle with specified center and radius.
Syntax: void circle(int x, int y, int radius)

Example: x = getmaxx();
Y = getmaxy();
circle(x/2, y/2, 75);

(/e C Programming . Graphics in C

g vision
fProgram: Write a C program to display the following output:

13.3.5 Drawing an Ellipse

The ellipse() function can be used to draw an elliptical arc in the current thickness and colour. The
linestyle does not affect the ellipse. ‘

Syntax: void ellipse(int x, int y,' int startangle, int endangle,
int xradius, int yradius)

] centre of ellipse — (X,y)
U x radius and y radius are the horizontal and vertical axes respectively.

Example: ellipse(x/2, y/2, 0, 360, 100, 50);

13.3.6 Drawing an Arc

The arc function draws an arc from a specific start angle to end angle with respect to a specified
centre and with a given radius.

Syntax: void arc(int xc, int yc, int startangle, int endangle, int rad);

Example: x = getmaxx()
y = getmaxy{)
arci{(x/2, y/2, 0, 90, 100);

.
’
.
’

C Programming . -Graphics in C) (/e

\
’ '
‘

13.3.7 Drawing Polygons
A polygon with n vertices can be drawn using the drawpoly function. \
Syntax: void drawpely(int num, int * polypoints);

This function draws a polygon with num-1 vertices using the current linestyle, thickness and |
colour. Polypoints points to an array of num *2 integers. Each pair of integers gives the x and y
coordinates of a vertex. Coordinates of (num) vertices have to be given where the coordinates of first

. th
vertex matches co-ordinates of num vertex.

Example

int coords[] = {100,100,200,100[200;150,150,200,100,150,100,100};
drawpoly (6, coords);

(100,100) {200,100)

(100,150) (200,150)

(150,200)

13.3.8 Filling Images

The setfillstyle function is used to set a fill pattern and colour. There are many predefined fill styles
as shown in the table.

EMPTY_FILL 0 Fill with background colour
SOLID_FILL 1 Solid fill

LINE_FILL 2 Filt with -----
LTSLASH_FILL 3 Fitt with ////
SLASH_FILL 4 Fill with //// thick lines
BKSLASH_FiLL 5 Fill with \\\, thick lines
LTBKSLASH_FILL 6 Fill with \\W\
HATCH_FiLL 7 Light hatch fill
XHATCH_FILL 8 Heavy cross-hatch fill
INTERLEAVE_FILL 9 Interleaving line fill
WIDE_DOT_FILL 10 | Widely spaced dot fill
CLOSE_DOT_FILL 11 Closely spaced dot fill
USER_FILL 12 User-defined fill pattern

Syntax: void setfillstyle(int pattern, int colour);

|/ I{)‘)“ C Programming . Graphics in C
The colour parameters can take a value from O to 15. A user can also specify the colour name
| instead of its integer value.

Example: setfillstyle(4,MAGENTA);
- bar (100, 100, 200, 200);
) rectangle (100, 100, 200, 200);
Note: The bar function is similar to rectangle but it does not draw the boundary but fills the inside
whereas the rectangle function does not fill the inside.

i

13.3.9 Pattern with a Difference

The setfillpattern() is like setfillstyle(), except that you use it to set a user_defined 8x8 pattern
rather than a predefined pattern.

The setfill pattern function is used to select a user defined fill pattern.

Syntax: setfillpattern(char * pattern, int colour)

The first parameter is a pointer to a sequence of 8 bytes, with each byte corresponding to 8 pixels
in the pattern. Whenever a bit in a pattern byte is set to 1, the corresponding pixel will be plotted. The
second parameter specifies the colour in which the pattern would be drawn.

13.3.10 Setting Colours

The setcolour function is used to set a specific drawing colour.

Syntax: void setcolor(int color);
The color parameter can take a value from O to 15 (as shown in table below). The current color is
used to draw graphics and output text.

BLACK

BLUE

GREEN
CYAN

RED
MAGENTA
BROWN
LIGHT GRAY
DARK GRAY
LIGHT BLUE
LIGHT GREEN
LIGHT CYAN
"LIGHT RED
LIGHT MAGENTA
YELLOW
WHITE

almialniZ|d|o|elN|oju|s|wjn]~|o

Example: setcolour (WHITE)
circle(x/2, y/2,- 100);

C Programming . Graphics in C (o

13.3.11 Setting Background Colours
The setbkcolour function is used to set the current background colour using the palette.
Syntax: void setbkcolor (int color);

The colour parameter can take a value from 0 to 15. If you use EGA (Enhanced Graphics Adapter)
or a VGA (Video Graphics Array) and you change the palette colours using setpalette() or
setallpalette(). The color value you use might not give you the correct color. This is because the
parameter to setbkcolor() indicates the entry number in the current palette rather than a specific color.

13.3.12 Setting Palette Colours
The setpalette function is used to change one palette colour.
Syntax: void setpalette(int colornum., int color);

Setpalette() changes the colournum entry in the palette to colour. The valid colours depend on the
current graphics driver and current graphics mode. The setallpalette function is used to change all
palette colours,

Syntax: void setallpalette(struct palettetype * palatte);

The setallpalette() function sets the current palette to the values gives in the palettetype structure
pointed to by palette.

You can partially or completely change the colours in the EGA/VGA palette with setallpalette().

The MAXCOLORS constant and the prototype structure used by setallpalette() are

#define MAXCOLORS 15
struct palettetype
{ unsigned char size;
signed char colors[MAXCOLORS + 1}1; };

Size gives the number of colours in the palette for the current graphics driver in the current mode.

Colours is an array of size bytes containing the actual row colour numbers for each entry in the
palette. If an element of colours is —1, the palette colour for that entry is not changed.

13.3.13 Filling regular and non regular shapes

To fill regular shapes like polygons and ellipses there exist standard library functions like fillpoly()
and fillellipse(). These functions fill the polygon or ellipse with the current fill style and current fill
colour that may have been set up by calling setfillstyle() or setfillpattern().

i fillpoly(): The fillpoly() function draws and fills a polygon.
Syntax. void fillpoly(int num, int *polypoints);

fillpoly() draws the outline of a polygon with num points in the current line style and colour
and then fills the polygon using the current fill pattern and fill colour, polypoints points to a
sequence of (num * 2) integers. Each pair of integers gives the x and y coordinates of a point on
the polygon.

C Programming L4 Graphics in C

fillellipse(): The fillellipse() function draws and fills an ellipse.
Syntax: void fillellipse(int x, int y, int xrad, int yrad);

fillellipse() draws an ellipse using (x, y) as a center point and xrad and yrad as the horizontal
and vertical axes and fills it with the current fill colour and fill pattern.

To fill non-regular shapes like the interesting area between an overlapping traingle and circle
the floodfill() function is used repeatedly.

floodfill(): The floodfill() function flood-fills the bounded region.
Syntax: void floodfill(int x, int y, int border);

(x, y) is a ‘seed” point within the enclosed area to be filled. The area bounded by the colour
border is flooded with the current fill pattern and fill colour.

13.4 OUTPUTTING TEXT

There are various functions in graphics.h which are used to display text and change text settings.

13.4.1 outtextxy() and outtext()

|

ii.
iil.

1v.

vi.

The outtextxy() function displays a string at the specified location using the current

settings(justification, colour direction, font and size)

Syntax: void outtextxy(int x, int y, char *s);

Example: x = getmaxx();

y getmaxy () ;
outtextxy(x/2, y/2, "Hello");

o

The outtext () function is similar to the above but it displays the string at the current position (c.p.)
Syntax: void outtext (char *s);

Example: outtext ("Hello");

13.4.2 Changing Text Setting

The settextstyle function allows setting characteristics for text output. It sets

font

text direction

character size ‘

Syntax: void settextstyle(int font, int direction, int charsize);
font can take a value from 0 to 4

Direction can take a value from O to 1. -

Charsize can take a value from 0 to 7.

C Programming) Graphics in C (7

R M SR

Name

ymbolic Name
DEFAULT_FONT 0 HORIZ_DIR 0
TRIPLEX_FONT 1 VERT_DIR 1
SMALL_FONT 2
SANS_SERIF_FONT 3
GOTHIC_FONT 4

Example: for (i=0;1i<=10;i++)
{ settextstyle(i,HORIZ_DIR, 2);
outtextxy(x,y, "DEMO");

X += 20; _
Yy += 20; }
13.4.3 Text Justification

We can also control the justification (positioning) the text with respect to the C.P. The
settextjustify() function can be used for this purpose.

Syntax: void settextjustify(int horiz, int vert);

The standard values are:

i

LEFT_TEXT 0 Horizontal
CENTRE_TEXT 1 Horizontal and vertical
RIGHT_TEXT 2 Horizontal
BOTTOM_TEXT 0 vertical

TOP_TEXT 2 vertical

The default values are LEFT_TEXT (for horiz) and TOP_LEFT (for vertical)

Example: settextjustify(1,1);
~ outtext ("Text Demo");

13.4.4 Finding text height and width
The textheight and textwidth functions returns the height and width of a string in pixels.

Syntax: int textheight (char *s);
int textwidth(char *s);

Example: char str[] = "Demo";
for(j = 1; j< = 4; j++)
{ settextstyle(2,HORIZ_DIR, i)
outtextxy(x,y, str);
y + (textheight (str) + 10);
X + (textwidth(str) + 10); }

(Mo C Programming . Graphics in C

vISION
SOLVED PROGRAMS

1. Write a function to display a bar graph for the runs per over.

2. Write a program to demonstrate fill color in circle.

C Programming Graphics in C

EXERCISES

Programming exercises

Write a program to draw a rectangle in the centre of the screen and fill it with all the fillstyles
and all colours.

Write a program to display 3 rectangles such that they occupy the screen diagonal as shown.
Calculate the height and width of the rectangles.

Review questions

BN~

® N o

Define the following terms: cp, Resolution, pixel.

What do you mean by graph driver and graph mode?

Explain the purpose of initgraph() and the DETECT macro.

Explain the following functions giving their syntax, usage and example. ,
i rectangle ii. circle iii. arc iv. ellipse
Which are the various functions that can be used to draw a line.

How can line settings be changed?

How can polygons be drawn and filled?

Explain different functions for outputting text.

UISION

Command Line Arguments

14.1 INTRODUCTION

So far we have been using main with an empty pair of parenthesis. In
environments that support C, there is a way to pass arguments or parameter.
to main when it begins executing, i.e., at runtime.

These arguments are called command line arguments because they are
passed from the command line during run time.

main is called with two arguments:

i. int arge: argument count which is the number of command line arguments the program was
called or invoked with.

ii. char * argv[]: Argument vector. It is an array of pointers each pointing to a command line
argument. ’

Declaration of main

When main has to accept command line arguments, it has to be declared differently. It is declared
as
main(int argc, char *argvl(])
{ —

— 1}

i. The subscripts for argv|] are O to argc-1.
ii. argv[0] is the name of the executable file of the program.

141 (/e
vision

C Programming ° Command Line Arguments (7

iii. Itis not necessary to use the words arge and argv and any others will also do. However, they are
used conventionally, so it is better to stick to them.

iv. The arguments have to be separated by white spaces. If a space is to be given as a part of an
argument, the argument along with the spaces can be specified in double quotes.

Examples

L. A simple program is the program display which echoes its command line arguments on the
screen. If the command is given as
Display argumentl 10 abcd
The output should be
argumentl 10 abcd

For this example argc = 4 and the arguments will be stored as:

Ly an e e

argv |
a0
argv[1] et argument \0 |
argv(2] et 100 |
argv[3] ————W
argvi4] null
Figure 14. 1 l

The program will be: |
Displays command line arguments

Write a program using command line arguments to find reverse
of a given three digit number.

Ulglfloll : C Programming) Command Line Arguments

14.2 ADVANTAGES OF COMMAND LINE ARGUMENTS

i. Arguments can be supplied during runtime. Therefore the program can accept different
arguments at different times.

ii. There is no need to change the source code to work with different inputs to the program.

Example: If a program is to be written without using command line arguments for copying the
contents of one file to another, both filenames will have to be specified in the program.

By using command line arguments, the program can be run with different file names every time
since the code in the program will refer to them using argv[].

iii. There’s no need to recompile the program since the source code is not changed.

A user can specify file names as command line arguments and the program can perform operations
on the specified file.

The same program can be used for different files since the filenames will be supplied at runtime.
Example as follows

A program to copy the contents of one file to another can be run for different source and target files
since the program accepts them as command line arguments.

The following program illustrates copying one file to another. The filenames are accepted as
command line arguments.

Filecopy using command line arguments;

To run this program if the following arguments are given at the command line.

filecopy in.txt out.txt

C Programming L Command Line Arguments (o

They will be stored as

argv[0] — filecopy
argv[1] — in.txt
argv[2] . — out.txt

Note: A program, which uses command line arguments, can be executed as follows:
i. By selecting the “Arguments” option from the menu bar and then specifying the arguments.

ii. ~ From the DOS prompt. An executable program has to be first created and then the file name
along with the arguments can be given at the system prompt.

(For the above examples, filecopy.exe has to be created first)

SOLVED PROGRAMS

1. Encrypt a.txt 2

Program to accept a filename and a key as command line arguments and encrypt the file
using the key.

fcloseali(i,

C Programming . Command Line Arguments

e
viaLon

2. Using command line accepts source file name and target file
name. Copies the all contents of source file into target file and
save the target file. Your program should handle the errors.

Ans
#include<stdio,
#include<e
#includexs
void mai@(
{ -
FILE *5f?
char c¢hj
if(argal=
(o

C Programming ® Command Line Arguments (e

EXERCISES

Programming exercises

o w

Accept three file names as command line arguments.

First two contain roll numbers and names. The roll numbers are in ascending orders. Merge
these two into the third file such that the third file still remains sorted on roll number.

WAP to accept the filenames as command line arguments, concatenate contents of second file to
first and store in the third.

WAP to display the command line arguments with the maximum number of characters.

Review questions

el

Is it necessary to use the words argc and argv to store Command Line Arguments?
What are the Command Line Arguments?

What are the advantages of Command Line Arguments?

What is the significance of argv[0]?

(e
VISION

Suggestive Readings:

1. [Ritchie,1993] Ritchie, D. The development of the C language. ACM Sigplan Notices.
28, 201-208 (1993)

2. [Kernighan Ritchie,1978] Kernighan, B. & Ritchie, D. The C Programming Language
Prentice Hall. Englewood Cliffs, New Jersey. (1978)

3. [Balasubramanian,2016] Balasubramanian, S. A brief history of the C programming
language. International Journal of Computer Applications. (2016)

4. [Alexander,2019] Alexander, M. The advantages of learning C programming.
(educba,2019), https://www.educba.com/advantages-of-learning-C-programming/

5. [Doyle,2013] Doyle, B. C Programming: From Problem Analysis to Program Design.
(Cengage Learning,2013)

6. [Donovan,2019] Donovan, B. A brief history of C. (IEEE Computer Society,2019)

7. [Ghezzi, et. al.,2018] Ghezzi, C., Jazayeri, M. & Mandrioli, D. Fundamentals of

software engi-neering. (Prentice-Hall, Inc.,1991)

	da9753d12e6132b5c506ecae1c8145b216a2799ab418ebc4dc9764fe7daf6018.pdf
	736d24d2d81781b934b419857c134391101ba6fe473b4404afdccf5f3c3d4581.pdf
	Microsoft Word - Syllabus C Pr
	2d4ef1ecd13e05e3c52979983ecbde11a957082aa9ea78c77fcaaa42d6cb66e7.pdf
	Microsoft Word - C Programming BCA SEM-2

